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Hopfield Networks

 Hopfield's papers [1982,1984] started 
the modern era in neural networks

 Construction of the first analog VLSI 
neural chip [1988]

 Single-layer feedback networks with 
symmetric weights

 Discrete and continuous time



Discrete time Hopfield 
network recurrent. Structure

 Input pattern is first 
applied to the 
network, and then 
removed

 The transition 
process continues 
until no new 
updated responces
are produced and 
network reached its 
equilibrium



Structure

 Updating rule

 No self feedback ௜௜

 Network weights are symmetric ௜௝ ௝௜

 Asynchronous update – only one node is 
updated at one moment 



Example

 Two node Hopfield network
 Inputs ݔ ൌ ଵߠ ,0 ൌ ଶߠ ൌ 0
 Weights ݓଵଶ ൌ ଶଵݓ ൌ െ1,ݓଵଵ ൌ ଶଶݓ ൌ 0	
 Initial output vector ݕሺ଴ሻ ൌ െ1,െ1 ்

 First node update. Assume now that the first node is 
chosen for update:

ଵݕ
ሺଵሻ ൌ sgn ଶݕଵଶݓ

଴ ൌ sgn െ1 െ1 ൌ 1



Example

 Now, ሺଵሻݕ ൌ 1,െ1 ். Next, the second node is 
considered for update;

ଶݕ
ሺଶሻ ൌ sgn ଵݕଶଵݓ

ଵ ൌ sgn െ1 1 ൌ െ1

 Now, ሺଶሻݕ ൌ 1,െ1 ்

 It can be easily found that no further output state 
changes will occur, and ݕሺଶሻ ൌ 1,െ1 ்	 is network 
equilibrium.



Example

 Using different initial outputs, 
we can obtain the state 
transition diagram, in which 
the vectors 1,െ1 ் and 
െ1, 1 ் are the two 

equilibria of the system



Example 
(synchronous update)

 Initial output vector െ1	 െ 1 ்

࢟ሺଵሻ ൌ
sgn ଶݕଵଶݓ

଴

sgn ଵݕଶଵݓ
଴ = sgn ሺെ1ሻሺെ1ሻ

sgn ሺെ1ሻሺെ1ሻ 	 ൌ
1
1

࢟ሺଶሻ ൌ
sgn ଶݕଵଶݓ

ଵ

sgn ଵݕଶଵݓ
ଵ = sgn ሺെ1ሻሺ1ሻ

sgn ሺെ1ሻሺ1ሻ 	 ൌ
െ1
െ1

 Thus, the result gives back the same vector ࢟ሺ଴ሻ.	Hence, 
the synchronous update produces a cycle of two states 
rather than a single equilibrium state.



Stability property of a 
discrete Hopfield network

 We can characterize the behavior of this network by an 
energy function E as

ܧ ൌ െ
1
2෍෍ݓ௜௝ݕ௜ݕ௝ െ෍ݔ௜ݕ௜ ൅෍ߠ௜ݕ௜

௡

௜ୀଵ

௡

௜ୀଵ

௡

௝ୀଵ
௝ஷ௜

௡

௜ୀଵ

 The idea is to show that if the network is stable, then the 
above energy function always decreases whenever the 
state of any node changes.



Stability property of a 
discrete Hopfield network

 Let us assume that node ݅ has just changed its state 
from ݕ௜

ሺ௞ሻ ൌ ௜ݕ
ሺ௞ାଵሻ. In other words, its output has 

changed from ൅1 to െ1, or vice versa. The change in 
energy Δܧ is then

Δܧ ൌ ܧ ௜ݕ
௞ାଵ െ ܧ ௜ݕ

௞

ൌ െ ∑ ௝ݕ௜௝ݓ
௞ െ ௜ݔ െ ௜௡ߠ

௝ୀଵ
௝ஷ௜

	ሺݕ௝
௞ାଵ െ ௝ݕ

ሺ௞ሻሻ

 Or briefly Δܧ ൌ െ net௜ Δݕ௜, where Δݕ௜ ൌ ௜ݕ
ሺ௞ାଵሻ െ ௜ݕ

ሺ௞ሻ



Stability property of a 
discrete Hopfield network

 If ݕ௜	has changed from	ݕ௜
ሺ௞ሻ ൌ െ1 to ݕ௜

ሺ௞ାଵሻ ൌ ൅1, (Δݕ௜ ൌ 2ሻ, 
net௜ ൐ 0	, Δܧ will be negative

 If ݕ௜	has changed from	ݕ௜
ሺ௞ሻ ൌ 1 to ݕ௜

ሺ௞ାଵሻ ൌ െ1, (Δݕ௜ ൌ െ2ሻ, 
net௜ ൏ 0	, Δܧ will be negative

 If ݕ௜	has no changed, Δܧ ൌ 0
 Finally: 

Δܧ ൑ 0



Stability property of a 
discrete Hopfield network

 Since the energy function ܧ is in quadratic form and is 
bounded,	ܧ must have an absolute minimum value. 

 Hence, the energy function, under the update rule, has 
to reach its minimum (probably a local minimum). Thus, 
starting at any initial state, a Hopfield network always 
converges to a stable state in a finite number of 
node-updating steps, where every stable state lies at a 
local minimum of the energy function E. 



Associative memories
 An associative memory can store a set of patterns as memories. 

When the associative memory is presented with a key pattern, it 
responds by producing whichever one of the stored patterns most 
closely resembles or relates to the key pattern. 

 Hence, the recall is through association of the key pattern with the 
information memorized. 

 Such memories are also called content-addressable memories in 
contrast to the traditional address-addressable memories in digital 
computers in which a stored pattern (in bytes) is recalled by its 
address.

 The basic concept of using Hopfield networks as associative 
memories is to interpret the system's evolution as a movement of an 
input pattern toward the one stored pattern most resembling the 
input pattern.



Associative memories
 Two types of associative memories can be distinguished

 autoassociative memory Φ ࢞௜ ൌ ࢞௜ (ܴ௡ → ܴ௡)
 If some arbitrary pattern ࢞ is closer to ࢞௜ than to any 

other ࢞௝, ݆ ് ݅	, then Φ ࢞ ൌ ࢞௜

 heteroassociative memory Φ ࢞௜ ൌ ࢟௜ (ܴ௡ → ܴ௠)
 If some arbitrary pattern ࢞ is closer to ࢞௜ than to any 

other ࢞௝, ݆ ് ݅	, then Φ ࢞ ൌ ࢟௜
 "closer" means with respect to some proper distance measure, for 

example, the Euclidean distance or the Hamming distance (HD)



Distance

 The Euclidean distance ݀ between two vectors

ଵ ଵ
ᇱ ଶ

௡ ௡
ᇱ ଶ

ଵ
ଶ

 Hamming distance is defined as the number of 
mismatched components of ݔ and ݔ′ vectors



Linear associator

 In a special case where the vectors ݔ௜,	݅	 ൌ 1, 2,… ,  ,݌
form an orthonormal set, the associative memory can 
be defined as
Φ ࢞ ൌ ࢞ࢃ ൌ ଵݕ ଵݔ ் ൅ ଶݕ ଶݔ ் ൅ ⋯൅ ௣ݕ ௣ݔ ் ࢞	

 where ࢃ can be considered a weight matrix, called a 
cross-correlation matrix, of the network.



Recurrent Autoassociative Memory
Hopfield Memory

 A Hopfield memory is able to recover an original stored 
vector when presented with a probe vector close to it.

 In Hopfield memory, data retrieval rule that is applied 
asynchronously and stochastically

 The remaining problem is how to store data in memory. 
Assume bipolar binary vectors that need to be stored 
are ࢞௞ for ݇	 ൌ 	1, 2, … ,  The storage algorithm for .݌
finding the weight matrix is

ࢃ ൌ ෍࢞௞ ࢞௞ ் െ 	ࡵ݌
௣

௞ୀଵ



Recurrent Autoassociative Memory
Hopfield Memory

 Equivalent	form

௜௝ݓ ൌ ෍ݔ௜௞ݔ௝௞								݅ ് ݆	; ௜௜ݓ ൌ 0
௣

௞ୀଵ
 A Hopfield memory is able to recover an original stored vector 

when presented with a probe vector close to it.
 In Hopfield memory, data retrieval rule that is applied 

asynchronously and stochastically
 The remaining problem is how to store data in memory. Assume 

bipolar binary vectors that need to be stored are ࢞௞ for ݇	 ൌ
	1, 2, … , The storage algorithm for finding the weight matrix is .݌

ࢃ ൌ ෍࢞௞ ࢞௞ ் െ 	ࡵ݌
௣

௞ୀଵ



Recurrent Autoassociative Memory
Hopfield Memory

 If ݔ௜ are unipolar binary vectors, that is, ݔ ∈ 	 0, 1 , then 
the storage rule is

௜௝ݓ ൌ෍ ௜௞ݔ2 െ 1 ௝௞ݔ2 െ 1 , 				݅ ് ݆	; ௜௜ݓ ൌ 0
௣

௞



Example

 A Hopfield memory with 120 nodes and thus 14,400 
weights is used to store the eight examplar patterns. 

 Input elements to the network take on the value + 1 for 
black pixels and -1 for white pixels. 

 In a test of recalling capability, the pattern for the digit 
3 is corrupted by randomly reversing each bit 
independently from + 1 to -1, and vice versa, with a 
probability of 0.25. 

 This corrupted pattern is then used as a key pattern 
and applied to the Hopfield network at time zero. 



Example

 The states of the network for iterations 0 to 7 are 
shown. 

 It is clear that the network converges to the digit 3 
pattern correctly.



Example

 Consider the use of a Hopfield memory to store the two 
vectors ࢞ଵ and ࢞ଶ

࢞ଵ ൌ 1	 െ 1	 െ 1		1 ்;	࢞ଶ ൌ െ1		1	 െ 1		1 ்;	
 We obtain the weight matrix as

ࢃ ൌ ෍ݔ௞ ௞ݔ ் െ ࡵ2
ଶ

௞ୀଵ

ൌ
0 െ2
െ2 0

0 0
0 0

0 0
0 0

0 െ2
െ2 0

 The energy function is

ܧ ࢞ ൌ െ
1
2࢞

࢞ࢃ் ൌ 2ሺݔଵݔଶ ൅ ସሻݔଷݔ



The state transition diagram



Example

 There are a total of 16 states, each of which 
corresponds to one vertex. 

 Figure shows all possible asynchronous transitions and 
their directions. Note that every vertex is connected only 
to the neighboring vertex differing by a single bit 
because of asynchronous transitions. 

 Each state is associated with its energy value. It is 
observed that transitions are toward lower energy 
values.

 There are two extra stable states	̅ݔଵ ൌ െ1	1		1	 െ 1 ்

and ̅ݔଶ ൌ 1	 െ 1 1 െ 1 ்



Transition examples

 Starting at the state ሾ1, 1, 1, 1ሿ and with nodes updating 
asynchronously in ascending order, we have state 
transitions 

 1, 1, 1, 1 → െ1,1,1,1 → െ1,1, 1,1 → െ1,1,െ1,1 …
 The state will converge at the stored pattern ݔଶ

 However, it is possible (with a different updating order) 
that the state 1, 1, 1, 1 	will converge to ݔଵ, ݔଶ, ̅ݔଵ, ଶݔ̅

 This happens because the Hamming distance between 
the initial state, ሾ1, 1, 1, 1ሿ and any of ݔଵ, ݔଶ, ̅ݔଵ,  is of	ଶݔ̅
the same value 2.



Important fact

 The above example indicates an important fact about the 
HopfieId memory - that the complement of a stored 
vector is also a stored vector.

 The reason is that they have the same energy value 
ܧ ࢞ ൌ  .(ሺഥ࢞ܧ

 Hence, the memory of transitions may terminate as  
easily at ࢞ as at ഥ࢞. 

 The crucial factor determining the convergence is the 
"similarity" between the initializing output vector and ࢞
and ഥ࢞.



Problems of Hopfield memories

 Two major problems of Hopfield memories are observed 
from the above example
 The first is the unplanned stable states, called spurious stable 

states, which are caused by the minima of the energy 
function in addition to the ones we want. 

 The second is uncertain recovery, which concerns the 
capacity of a Hopfield memory. Overloaded memory may 
result in a small Hamming distance between stored patterns 
and hence does not provide error-free or efficient recovery of 
stored patterns. 



Problems of Hopfield memories

 It has been observed that the relative, number of 
spurious states decreases as the dimensionality of the 
stored vectors (i.e. the number of neurons ݊) increases 
with respect to the number of stored vectors. 

 Eventually, a point is reached where there are relatively 
so few within a certain Hamming radius of each original 
stored vector that it becomes valid to consider each 
memory as having a fixed; radius of convergence.


