
Neuralne mreže

RadialBasisNetworks 2010

Radial basis function
networks

 Radial basis function network (RBFN)
 Hybrid network
 Uses the hybrid unsupervised and

supervised learning scheme
 The RBFN is designed to perform input-

output mapping trained by examples
(௞ ௞), .

Structure of the RBFN

Radial basis function
networks

 The RBFN is based on the concept of the locally tuned
and overlapping receptive field structure studied in the
cerebral cortex, the visual cortex, and so on.

 Unlike the instar-outstar model in which the hidden
nodes are linear winner-take-all nodes, the hidden
nodes in the RBFN have normalized Gaussian
activation function

Radial basis function
networks

 where ࢞ is the input vector. Thus, hidden node ݍ gives
a maximum response to input vectors close to ࢓௤.

 Each hidden node ݍ is said to have its own receptive
field ܴ௤ሺ࢞ሻ in the input space, which is a region
centered on ࢓௤ with size proportional to ߪ௤	where ࢓௤
and ߪ௣ are the mean and variance

 The output of the RBFN is simply the weighted sum of
the hidden node output:

௜ݕ ൌ ܽ௜ሺ෍ݓ௜௤ݖ௤ ൅ 		௜ሻߠ
௟

௤ୀଵ

Radial basis function
networks

 where ܽ௜ሺ. ሻ is the output activation function and ߠ௜ is
the threshold value.

 Generally, ܽ௜ሺ. ሻ is an identity function (i.e., the output
node is a linear unit) and	ߠ௜ ൌ 0.

 The purpose of the RBFN is to pave the input space
with overlapping receptive fields.

 For an input vector ݔ lying somewhere in the input
space, the receptive fields with centers close to it will
be appreciably activated. The output of the RBFN is
then the weighted sum of the activations of these
receptive fields.

Radial basis function
networks

 In the extreme case, if ݔ lies in the center of the
receptive field for hidden node ݍ, then ݔ ൌ ݉௤. If we
ignore the overlaps between different receptive fields,
then only hidden node ݍ is activated (a winner) and
the corresponding weight vector is chosen as the
output, assuming linear output units.

 Hence, the RBFN acts like a gradient-type forward-only
counterpropagation network.

Training
 The RBFN is basically trained by the hybrid learning rule:

 unsupervised learning in the input layer
 supervised learning in the output layer.

 The weights in the output layer can be updated simply by using the
delta learning rule:

Δݓ௜௤ ൌ ߟ ݀௜ െ ௜ݕ ௤ݖ
 The unsupervised part of the learning involves the determination of the

receptive field centers ࢓௤ and widths ߪ௤, ݍ	 ൌ 	1, 2, … , ݈.
 The proper centers ࢓௤ can be found by unsupervised learning rules

e.g. simply the Kohonen learning rule, where ࢓௖௟௢௦௘௦௧ is the center of
the receptive field closest to the input vector ࢞ and the other centers
are kept unchanged.

Δ࢓௖௟௢௦௘௦௧ ൌ ߟ ࢞ െ࢓௖௟௢௦௘௦௧

Training

 In practice, the widths ߪ௤ are usually determined by an
ad hoc choice such as the mean distance to the first
few nearest neighbors ݉ (the ߛ	nearest neighbors
heuristic).

 In the simplest case, the following first-nearest-
neighbor heuristic can be used:

௤ߪ ൌ
|݉௤ െ݉௖௟௢௦௘௦௧|

ߛ
 where ࢓௖௟௢௦௘௦௧ is the closest vector to ࢓௤

Advantages

 The RBFN offers a viable alternative to the two-layer neural network
in many applications of signal processing, pattern recognition, control,
and function approximation.

 In fact, it has been shown that the RBFN can fit an arbitrary function
with just one hidden layer.

 Also, it has been shown that a Gaussian sum density estimator can
approximate any probability density function to any desired degree of
accuracy.

 Although the RBFN generally cannot quite achieve the accuracy of
the back-propagation network, it can be trained several orders of
magnitude faster than the back-propagation network. This is again
due to the advantage of hybrid-learning networks which have only one
layer of connections trained by supervised learning.

Supervised learning of RBFN

 The RBFN can also be trained by the error back-
propagation rule and becomes a purely supervised learning
network.

 The goal is to minimize the cost function globally

ܧ ௜௤ݓ ൌ ଵ
ଶ
∑ ∑ ݀௜௞ െ ௜௞ݕ

ଶ
௜௞ =ଵ

ଶ
∑ ∑ ݀௜௞ െ ∑ ௜௤݃௤ݓ ࢞௞௟

௤ୀଵ
ଶ

௜௞

 In this approach, the output layer is still trained by
backpropagation.

 The output error is then back-propagated to the layer of
receptive fields to update their centers and widths.

Supervised learning of RBFN
 According to the chain rule, the supervised learning rule for

the RBFN can be derived as

 In this way, the centers and widths of the receptive fields
can be adjusted dynamically.

 Unfortunately, the RBFN with back-propagation learning
does not learn appreciably faster than the backpropagation
network.

Radial Basis Networks

 Radial basis networks can require more neurons than
standard feedforward backpropagation networks, but
often they can be designed in a fraction of the time it
takes to train standard feedforward networks

 They work best when many training vectors are
available

 Two variants of radial basis networks:
 Generalized regression networks (GRNN)
 probabilistic neural networks (PNN)

 Radial basis networks can be designed with either
newrbe or newrb. GRNNs and PNNs can be
designed with newgrnn and newpnn, respectively.

Radial Basis Functions
Neuron Model

 Notice that the expression for the net input of a radbas neuron
is different from that of other neurons. Here the net input to the
radbas transfer function is the vector distance between its
weight vector w and the input vector p, multiplied by the bias b.

Network Architecture

 a{1} = radbas(netprod(dist(net.IW{1,1},p),net.b{1}))

Exact Design (newrbe)

 This function can produce a network with zero error on
training vectors. It is called in the following way:
 net = newrbe(P,T,SPREAD)

 This function newrbe creates as many radbas
neurons as there are input vectors in P

 The drawback to newrbe is that it produces a network
with as many hidden neurons as there are input
vectors. For this reason, newrbe does not return an
acceptable solution when many input vectors are
needed to properly define a network, as is typically the
case

Efficient Design (newrb)

 The function newrb iteratively creates
a radial basis network one neuron at a
time. Neurons are added to the
network until the sum-squared error
falls beneath an error goal or a
maximum number of neurons has
been reached. The call for this
function is
 net = newrb(P,T,GOAL,SPREAD)

Radial Basis and feedforward NN

 Why not always use a radial basis network instead of a
standard feedforward network?

 Radial basis networks, even when designed efficiently
with newrbe, tend to have many times more neurons
than a comparable feedforward network with tansig or
logsig neurons in the hidden layer.

 This is because sigmoid neurons can have outputs
over a large region of the input space, while radbas
neurons only respond to relatively small regions of the
input space. The result is that the larger the input
space (in terms of number of inputs, and the ranges
those inputs vary over) the more radbas neurons
required.

