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Radial basis function 
networks

 Radial basis function network (RBFN)
 Hybrid network
 Uses the hybrid unsupervised and 

supervised learning scheme
 The RBFN is designed to perform input-

output mapping trained by examples
( ௞ ௞), . 



Structure of the RBFN
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 The RBFN is based on the concept of the locally tuned 
and overlapping receptive field structure studied in the 
cerebral cortex, the visual cortex, and so on. 

 Unlike the instar-outstar model in which the hidden 
nodes are linear winner-take-all nodes, the hidden 
nodes in the RBFN have normalized Gaussian 
activation function
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 where ࢞ is the input vector. Thus, hidden node ݍ gives 
a maximum response to input vectors close to ࢓௤.

 Each hidden node ݍ is said to have its own receptive 
field ܴ௤ሺ࢞ሻ in the input space, which is a region 
centered on ࢓௤ with size proportional to ߪ௤	where ࢓௤
and ߪ௣ are the mean and variance

 The output of the RBFN is simply the weighted sum of 
the hidden node output:

௜ݕ ൌ ܽ௜ሺ෍ݓ௜௤ݖ௤ ൅ 		௜ሻߠ
௟

௤ୀଵ
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 where ܽ௜ሺ. ሻ is the output activation function and ߠ௜ is 
the threshold value. 

 Generally, ܽ௜ሺ. ሻ is an identity function (i.e., the output 
node is a linear unit) and	ߠ௜ ൌ 0.

 The purpose of the RBFN is to pave the input space 
with overlapping receptive fields. 

 For an input vector ݔ lying somewhere in the input 
space, the receptive fields with centers close to it will 
be appreciably activated. The output of the RBFN is 
then the weighted sum of the activations of these 
receptive fields. 
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 In the extreme case, if ݔ lies in the center of the 
receptive field for hidden node ݍ, then ݔ ൌ ݉௤. If we 
ignore the overlaps between different receptive fields, 
then only hidden node ݍ is activated (a winner) and 
the corresponding weight vector is chosen as the 
output, assuming linear output units. 

 Hence, the RBFN acts like a gradient-type forward-only 
counterpropagation network.



Training
 The RBFN is basically trained by the hybrid learning rule: 

 unsupervised learning in the input layer
 supervised learning in the output layer. 

 The weights in the output layer can be updated simply by using the 
delta learning rule:

Δݓ௜௤ ൌ ߟ ݀௜ െ ௜ݕ ௤ݖ
 The unsupervised part of the learning involves the determination of the 

receptive field centers ࢓௤ and widths ߪ௤, ݍ	 ൌ 	1, 2, … , ݈. 
 The proper centers ࢓௤ can be found by unsupervised learning rules 

e.g. simply the Kohonen learning rule, where ࢓௖௟௢௦௘௦௧ is the center of 
the receptive field closest to the input vector ࢞ and the other centers 
are kept unchanged.

Δ࢓௖௟௢௦௘௦௧ ൌ ߟ ࢞ െ࢓௖௟௢௦௘௦௧



Training

 In practice, the widths ߪ௤ are usually determined by an 
ad hoc choice such as the mean distance to the first 
few nearest neighbors ݉ (the ߛ	nearest neighbors 
heuristic). 

 In the simplest case, the following first-nearest-
neighbor heuristic can be used:

௤ߪ ൌ
|݉௤ െ݉௖௟௢௦௘௦௧|

ߛ
 where ࢓௖௟௢௦௘௦௧ is the closest vector to ࢓௤



Advantages 

 The RBFN offers a viable alternative to the two-layer neural network 
in many applications of signal processing, pattern recognition, control, 
and function approximation. 

 In fact, it has been shown that the RBFN can fit an arbitrary function 
with just one hidden layer. 

 Also, it has been shown that a Gaussian sum density estimator can 
approximate any probability density function to any desired degree of 
accuracy. 

 Although the RBFN generally cannot quite achieve the accuracy of 
the back-propagation network, it can be trained several orders of 
magnitude faster than the back-propagation network. This is again 
due to the advantage of hybrid-learning networks which have only one 
layer of connections trained by supervised learning.



Supervised learning of RBFN

 The RBFN can also be trained by the error back-
propagation rule and becomes a purely supervised learning 
network. 

 The goal is to minimize the cost function globally

ܧ ௜௤ݓ ൌ ଵ
ଶ
∑ ∑ ݀௜௞ െ ௜௞ݕ

ଶ
௜௞ =ଵ

ଶ
∑ ∑ ݀௜௞ െ ∑ ௜௤݃௤ݓ ࢞௞௟

௤ୀଵ
ଶ

௜௞

 In this approach, the output layer is still trained by 
backpropagation. 

 The output error is then back-propagated to the layer of 
receptive fields to update their centers and widths.



Supervised learning of RBFN
 According to the chain rule, the supervised learning rule for 

the RBFN can be derived as

 In this way, the centers and widths of the receptive fields 
can be adjusted dynamically. 

 Unfortunately, the RBFN with back-propagation learning 
does not learn appreciably faster than the backpropagation
network.



Radial Basis Networks

 Radial basis networks can require more neurons than 
standard feedforward backpropagation networks, but 
often they can be designed in a fraction of the time it 
takes to train standard feedforward networks

 They work best when many training vectors are 
available

 Two variants of radial basis networks:
 Generalized regression networks (GRNN)
 probabilistic neural networks (PNN)

 Radial basis networks can be designed with either 
newrbe or newrb. GRNNs and PNNs can be 
designed with newgrnn and newpnn, respectively.



Radial Basis Functions
Neuron Model

 Notice that the expression for the net input of a radbas neuron 
is different from that of other neurons. Here the net input to the 
radbas transfer function is the vector distance between its 
weight vector w and the input vector p, multiplied by the bias b.



Network Architecture

 a{1} = radbas(netprod(dist(net.IW{1,1},p),net.b{1}))



Exact Design (newrbe)

 This function can produce a network with zero error on 
training vectors. It is called in the following way:
 net = newrbe(P,T,SPREAD)

 This function newrbe creates as many radbas 
neurons as there are input vectors in P

 The drawback to newrbe is that it produces a network 
with as many hidden neurons as there are input 
vectors. For this reason, newrbe does not return an  
acceptable solution when many input vectors are 
needed to properly define a network, as is typically the 
case



Efficient Design (newrb)

 The function newrb iteratively creates 
a radial basis network one neuron at a 
time. Neurons are added to the 
network until the sum-squared error 
falls beneath an error goal or a 
maximum number of neurons has 
been reached. The call for this 
function is
 net = newrb(P,T,GOAL,SPREAD)



Radial Basis and feedforward NN

 Why not always use a radial basis network instead of a 
standard feedforward network? 

 Radial basis networks, even when designed efficiently 
with newrbe, tend to have many times more neurons 
than a comparable feedforward network with tansig or 
logsig neurons in the hidden layer.

 This is because sigmoid neurons can have outputs 
over a large region of the input space, while radbas 
neurons only respond to relatively small regions of the 
input space. The result is that the larger the input 
space (in terms of number of inputs, and the ranges 
those inputs vary over) the more radbas neurons 
required.


