
Multilayer
feedforward
networks

Back Propagation

Introduction

 Simple perceptron has ability to solve a problem depends
on the condition that the input patterns of the problem be
linearly separable (for threshold units) or linearly
independent (for continuous and differentiable units).

 These limitations of simple perceptrons do not apply to
feedforward networks with intermediate or "hidden" layers
between the input and output layers.

 An example shows why multilayer networks can solve
problems that cannot be solved by single-layer networks.

Example
 This example illustrates how a linearly

nonseparable problem is transformed to a
linearly separable problem by a space
transformation and thus can be solved by a
multilayer perceptron network with LTUs.

 The problem we consider is the XOR problem.
 Input patterns and the corresponding desired

outputs are:

Example

 Multilayer perceptron for the XOR problem
 (a) Input space (linearly nonseparable)
 (b) Image space (linearly separable)
 (c) A multilayer perceptron network for the

XOR problem.

Example

Introduction

 Backpropagation was created by
generalizing the Widrow-Hoff learning rule
to multiple-layer networks and nonlinear
differentiable transfer functions

 Standard backpropagation is a gradient
descent algorithm, as is the Widrow-Hoff
learning rule, in which the network weights
are moved along the negative of the
gradient of the performance function

 There are a number of variations on the
basic algorithm that are based on other
standard optimization techniques, such as
conjugate gradient and Newton methods

Back propagation

 The back-propagation learning algorithm is one of the
most important historical developments in neural
networks [Bryson & Ho 1969; Werbos 1974; LeCun
1985; Parker 1985; Rumelhart et al. 1986]

 This learning algorithm is applied to multilayer
feedforward networks consisting of processing elements
with continuous differentiable activation functions.

 Such networks associated with the back-propagation
learning algorithm are also called back-propagation
networks.

Back propagation

Back propagation

Example

 Let us consider a three-layer network

Example

Example

Example

Example

Example

Example

Example

Example

Algorithm BP

Example

Example

 Step 3

 Step 4
 Error signals

 Step 4
 Weight update

Algorithm

 There are two different ways in which this
gradient descent algorithm can be
implemented:
 incremental mode (gradient is computed

and the weights are updated after each input
is applied to the network)

 batch mode (all the inputs are applied to the
network before the weights are updated)

Learning factors of Back
Propagation
 Learning factors
 initial weights
 learning constant
 cost function
 update rule
 size and nature of the training set
 architecture (number of layers and

number of nodes per layer)

Initial weights

Learning constant

Learning constant

Learning constant

Cost functions

Cost functions

Momentum

Momentum

Momentum

Update rules

 Although the gradient-descent (or steepest-descent)
method is one of the simplest optimization techniques, it
is not a very effective one.

 Further numerical optimization theory [Luenberger, 1976]
can be applied to make convergence of the back
propagation algorithm significantly faster.

 Numerical optimization theory provides a rich and robust
set of techniques which can be applied to neural
networks to improve learning rates.

Update rules

Update rules
 This is called Newton's method of weight updating. Newton's method uses

the second derivative in addition to the gradient to determine the next step
direction and_step size.

 It can converge quadratically when close to the solution of a convex
function.

 However, there are several drawbacks in Newton's method.
 In order to converge, it requires a good initial estimate of the solution.
 For a convex function, it can converge quickly; however, for a nonconvex

function, it may easily converge to a local minimum or a saddle point.
 The key drawback is that each iteration requires computation of the Hessian

matrix and also its inversion, and so the method is expensive in terms of both
storage and computation requirements.

 Hence, it is not a practical technique, and alternative or revised methods
have been proposed. These include the conjugate-direction method and
the quasi-Newton method [Luenberger, 1976].

Objective

 The primary objective is to explain how to use the
backpropagation training functions in the toolbox
to train feedforward neural networks to solve
specific problems. There are generally four steps
in the training process:

1. Assemble the training data.
2. Create the network object.
3. Train the network.
4. Simulate the network response to new inputs.

Arcitecture
Neuron Model (logsig, tansig, purelin)

Neuron Model (logsig, tansig, purelin)

Feedforward network
One layer

Feedforward network
Two layers (Hidden and output)

This network can be used as a general function approximator. It can
approximate any function with a finite number of discontinuities arbitrarily
well, given sufficient neurons in the hidden layer

Creating a Network (newff)

net = newff(P,T,S,TF,BTF,BLF,PF,IPF,OPF,DDF)

NEWFF(P,T,S,TF,BTF,BLF,PF,IPF,OPF,DDF) takes,
 P - RxQ1 matrix of Q1 representative R-element input vectors.
 T - SNxQ2 matrix of Q2 representative SN-element target vectors.
 Si - Sizes of N-1 hidden layers, S1 to S(N-1), default = [].

(Output layer size SN is determined from T.)
 TFi - Transfer function of ith layer. Default is 'tansig' for

hidden layers, and 'purelin' for output layer.
 BTF - Backprop network training function, default = 'trainlm'.
 BLF - Backprop weight/bias learning function, default = 'learngdm'.
 PF - Performance function, default = 'mse'.
 IPF - Row cell array of input processing functions.

Default is {'fixunknowns','remconstantrows','mapminmax'}.
 OPF - Row cell array of output processing functions.

Default is {'remconstantrows','mapminmax'}.
 DDF - Data division function, default = 'dividerand';

and returns an N layer feed-forward backprop network

Creating a Network (newff)
Example

 P = [0 1 2 3 4 5 6 7 8 9 10];
 T = [0 1 2 3 4 3 2 1 2 3 4];

 Here a network is created with one hidden
layer of 5 neurons, (1 input, 1 output)
 net = newff(P,T,5);
 Y = sim(net,P);
 plot(P,T,P,Y,'o')

 Training
 net.trainParam.epochs = 50;
 net = train(net,P,T);
 Y = sim(net,P);
 plot(P,T,P,Y,'o')

Initializing Weights (init) &
Simulation (sim)
 Init network:
net = init(net);

 Simulation for a single input vector:
p = [1;2];
a = sim(net,p)

 Simulation for a concurrent set of three
inputvectors:
p = [1 3 2;2 4 1];
a=sim(net,p)

Training

 The network can be trained for
 function approximation (nonlinear regression),
 pattern association,
 pattern classification

 The training process requires a set of examples of
proper network behavior - network inputs p and target
outputs t

 During training the weights and biases of the network
are iteratively adjusted to minimize the network
performance function net.performFcn

 The default performance function for feedforward
networks is mean square error mse - the average
squared error between the network outputs a and the
target outputs t

Batch Gradient Descent (traingd)

 There are seven training parameters
associated with traingd:
 epochs
 show
 goal
 time
 min_grad
 max_fail
 lr

Example - traingd

p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net=newff(p,t,3,{'tansig','purelin'},'traingd');

 modify some of the default training parameters
net.trainParam.show = 50;
net.trainParam.lr = 0.05;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;

[net,tr]=train(net,p,t);
TRAINGD, Epoch 0/300, MSE 1.59423/1e-05,

Gradient 2.76799/1e-10
TRAINGD, Epoch 50/300, MSE 0.00236382/1e-05,

Gradient 0.0495292/1e-10
TRAINGD, Epoch 100/300, MSE 0.000435947/1e-05,

Gradient 0.0161202/1e-10
TRAINGD, Epoch 150/300, MSE 8.68462e-05/1e-05,

Gradient 0.00769588/1e-10
TRAINGD, Epoch 200/300, MSE 1.45042e-05/1e-05,

Gradient 0.00325667/1e-10
TRAINGD, Epoch 211/300, MSE 9.64816e-06/1e-05,

Gradient 0.00266775/1e-10
TRAINGD, Performance goal met.

 Simulate
a = sim(net,p)
a =
-1.0010 -0.9989 1.0018 0.9985

Batch Gradient Descent with
Momentum (traingdm)
 Another batch algorithm for feedforward networks that often

provides faster convergence: traingdm, steepest descent
with momentum

 Acting like a lowpass filter, momentum allows the network to
ignore small features in the error surface. Without
momentum a network can get stuck in a shallow local
minimum. With momentum a network can slide through such
a minimum

 You can add momentum to backpropagation learning by
making weight changes equal to the sum of a fraction of
the last weight change and the new change suggested
by the backpropagation rule. The magnitude of the effect
that the last weight change is allowed to have is mediated
by a momentum constant, mc, which can be any number
between 0 and 1
 When the momentum constant is 0, a weight change is

based solely on the gradient
 When the momentum constant is 1, the new weight change

is set to equal the last weight change and the gradient is
simply ignored

Example - traingdm
p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net=newff(p,t,3,{'tansig','purelin'},'traingdm');
net.trainParam.show = 50;
net.trainParam.lr = 0.05;
net.trainParam.mc = 0.9;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
[net,tr]=train(net,p,t);
TRAINGDM, Epoch 0/300, MSE 3.6913/1e-05, Gradient
4.54729/1e-10
TRAINGDM, Epoch 50/300, MSE 0.00532188/1e-05, Gradient
0.213222/1e-10
TRAINGDM, Epoch 100/300, MSE 6.34868e-05/1e-05, Gradient
0.0409749/1e-10
TRAINGDM, Epoch 114/300, MSE 9.06235e-06/1e-05, Gradient
0.00908756/1e-10
TRAINGDM, Performance goal met.
a = sim(net,p)
a =
-1.0026 -1.0044 0.9969 0.9992

Faster Training

 heuristic techniques
 variable learning rate backpropagation

(traingda, traingdx)
 resilient backpropagation (trainrp)

 standard numerical optimization techniques
 Conjugate Gradient Algorithms (traincgf,
 traincgp, traincgb, trainscg)
 Quasi-Newton Algorithms (trainbfg,
trainoss)

 Levenberg-Marquardt (trainlm)

Training data and
generalization

Training data and
generalization

 The back-propagation network is good at generalization.
 The network is said to generalize well when it sensibly interpolates input

patterns that are new to the network.
 Networks with too many trainable parameters for the given amount of training

data learn well but do not generalize well. This phenomenon is usually
called overfitting.

 With too few trainable parameters, the network fails to learn the training data
and performs very poorly on the test data.

 In order to improve the ability of a network to generalize from a training data
set to a test data set, it is desirable that small changes in the input space
of a pattern do not change the output components. This can be done by
including variations in the input space of training patterns as part of the training
set but this is computationally very expensive.

Training data and
generalization

Pruning neural networks

 One possible method of obtaining a neural network of
appropriate size for a particular problem is to start with a
larger network and then prune it to the desired size.

 network-pruning techniques for general feedforward or
recurrent networks
 Weight Decay
 Connection and Node Pruning

Weight Decay

Weight Decay

Weight Decay

Connection and Node Pruning

Connection and Node Pruning

Connection and Node Pruning

Connection and Node Pruning

Number of hidden nodes

 The size of a hidden layer is a fundamental question often raised in the
application of multilayer feedforward networks to real-world problems.

 The exact analysis of this issue is rather difficult because of the complexity of
the network mapping and the nondeterministic nature of many successfully
completed training procedures.

 The size of a hidden layer is usually determined experimentally.
 One empirical guideline is as follows. For a network of reasonable size (e.g.,

hundreds or thousands of inputs), the size of hidden nodes needs to be only
a relatively small fraction of the input layer.
 If the network fails to converge to a solution, it may be that more hidden nodes are

required.
 If it does converge, you may try fewer hidden nodes and then settle on a size

based on overall system performance

Improving Generalization

Regularization

Early Stopping

Train, validation and test

 60% are used for training
 20% are used to validate that the network is

generalizing and to stop training before
overfitting

 The last 20% are used as a completely
independent test of network generalization

Train, validation and test

	Multilayer feedforward networks
	Introduction
	Example
	Example
	Example
	Introduction
	Back propagation
	Back propagation
	Back propagation
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Algorithm BP
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Example
	Example
	Slide Number 25
	Slide Number 26
	Algorithm
	Learning factors of Back Propagation
	Initial weights
	Learning constant
	Learning constant
	Learning constant
	Cost functions
	Cost functions
	Momentum
	Momentum
	Momentum
	Update rules
	Update rules
	Update rules
	Objective
	Arcitecture �Neuron Model (logsig, tansig, purelin)
	Neuron Model (logsig, tansig, purelin)
	Feedforward network �One layer
	Feedforward network �Two layers (Hidden and output)
	Creating a Network (newff)
	Creating a Network (newff) �Example
	Initializing Weights (init) &�Simulation (sim)
	Training
	Batch Gradient Descent (traingd)
	Example - traingd
	Slide Number 52
	Batch Gradient Descent with Momentum (traingdm)
	Example - traingdm
	Faster Training
	Training data and generalization
	Training data and generalization
	Training data and generalization
	Pruning neural networks
	Weight Decay
	Weight Decay
	Weight Decay
	Connection and Node Pruning
	Connection and Node Pruning
	Connection and Node Pruning
	Connection and Node Pruning
	Number of hidden nodes
	Improving Generalization
	Regularization
	Early Stopping
	Train, validation and test
	Train, validation and test

