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Introduction

 Simple perceptron has ability to solve a problem depends 
on the condition that the input patterns of the problem be 
linearly separable (for threshold units) or linearly 
independent (for continuous and differentiable units). 

 These limitations of simple perceptrons do not apply to 
feedforward networks with intermediate or "hidden" layers 
between the input and output layers. 

 An example shows why multilayer networks can solve 
problems that cannot be solved by single-layer networks.



Example
 This example illustrates how a linearly 

nonseparable problem is transformed to a 
linearly separable problem by a space 
transformation and thus can be solved by a 
multilayer perceptron network with LTUs. 

 The problem we consider is the XOR problem.
 Input patterns and the corresponding desired 

outputs are:



Example

 Multilayer perceptron for the XOR problem
 (a) Input space (linearly nonseparable)
 (b) Image space (linearly separable)
 (c) A multilayer perceptron network for the 

XOR problem. 



Example




Introduction

 Backpropagation was created by 
generalizing the Widrow-Hoff learning rule 
to multiple-layer networks and nonlinear 
differentiable transfer functions

 Standard backpropagation is a gradient 
descent algorithm, as is the Widrow-Hoff 
learning rule, in which the network weights 
are moved along the negative of the 
gradient of the performance function

 There are a number of variations on the 
basic algorithm that are based on other 
standard optimization techniques, such as 
conjugate gradient and Newton methods



Back propagation

 The back-propagation learning algorithm is one of the 
most important historical developments in neural 
networks [Bryson & Ho 1969; Werbos 1974; LeCun
1985; Parker 1985; Rumelhart et al. 1986]

 This learning algorithm is applied to multilayer 
feedforward networks consisting of processing elements 
with continuous differentiable activation functions. 

 Such networks associated with the back-propagation 
learning algorithm are also called back-propagation 
networks.



Back propagation





Back propagation
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Example

 Let us consider a three-layer network
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Algorithm BP
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 Step 3

 Step 4
 Error signals



 Step 4 
 Weight update



Algorithm

 There are two different ways in which this 
gradient descent algorithm can be 
implemented: 
 incremental mode (gradient is computed 

and the weights are updated after each input 
is applied to the network) 

 batch mode (all the inputs are applied to the 
network before the weights are updated)



Learning factors of Back 
Propagation
 Learning factors 
 initial weights 
 learning constant 
 cost function
 update rule
 size and nature of the training set 
 architecture (number of layers and 

number of nodes per layer)



Initial weights





Learning constant
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Learning constant





Learning constant
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Cost functions
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Cost functions
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Momentum
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Momentum



Momentum
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Update rules

 Although the gradient-descent (or steepest-descent) 
method is one of the simplest optimization techniques, it 
is not a very effective one. 

 Further numerical optimization theory [Luenberger, 1976] 
can be applied to make convergence of the back 
propagation algorithm significantly faster. 

 Numerical optimization theory provides a rich and robust 
set of techniques which can be applied to neural 
networks to improve learning rates. 



Update rules




Update rules
 This is called Newton's method of weight updating. Newton's method uses 

the second derivative in addition to the gradient to determine the next step 
direction and_step size. 

 It can converge quadratically when close to the solution of a convex 
function. 

 However, there are several drawbacks in Newton's method. 
 In order to converge, it requires a good initial estimate of the solution. 
 For a convex function, it can converge quickly; however, for a nonconvex

function, it may easily converge to a local minimum or a saddle point. 
 The key drawback is that each iteration requires computation of the Hessian 

matrix and also its inversion, and so the method is expensive in terms of both 
storage and computation requirements. 

 Hence, it is not a practical technique, and alternative or revised methods 
have been proposed. These include the conjugate-direction method and 
the quasi-Newton method [Luenberger, 1976].



Objective

 The primary objective is to explain how to use the 
backpropagation training functions in the toolbox 
to train feedforward neural networks to solve 
specific problems. There are generally four steps 
in the training process:

1. Assemble the training data.
2. Create the network object.
3. Train the network.
4. Simulate the network response to new inputs.



Arcitecture 
Neuron Model (logsig, tansig, purelin)



Neuron Model (logsig, tansig, purelin)



Feedforward network 
One layer



Feedforward network 
Two layers (Hidden and output)

This network can be used as a general function approximator. It can 
approximate any function with a finite number of discontinuities arbitrarily
well, given sufficient neurons in the hidden layer



Creating a Network (newff)

net = newff(P,T,S,TF,BTF,BLF,PF,IPF,OPF,DDF)

NEWFF(P,T,S,TF,BTF,BLF,PF,IPF,OPF,DDF) takes,
 P  - RxQ1 matrix of Q1 representative R-element input vectors.
 T  - SNxQ2 matrix of Q2 representative SN-element target vectors.
 Si  - Sizes of N-1 hidden layers, S1 to S(N-1), default = [].

(Output layer size SN is determined from T.)
 TFi - Transfer function of ith layer. Default is 'tansig' for

hidden layers, and 'purelin' for output layer.
 BTF - Backprop network training function, default = 'trainlm'.
 BLF - Backprop weight/bias learning function, default = 'learngdm'.
 PF  - Performance function, default = 'mse'.
 IPF - Row cell array of input processing functions.

Default is {'fixunknowns','remconstantrows','mapminmax'}.
 OPF - Row cell array of output processing functions.

Default is {'remconstantrows','mapminmax'}.
 DDF - Data division function, default = 'dividerand';

and returns an N layer feed-forward backprop network



Creating a Network (newff) 
Example

 P = [0 1 2 3 4 5 6 7 8 9 10];
 T = [0 1 2 3 4 3 2 1 2 3 4];

 Here a network is created with one hidden 
layer of 5 neurons, (1 input, 1 output)
 net = newff(P,T,5); 
 Y = sim(net,P);
 plot(P,T,P,Y,'o')

 Training
 net.trainParam.epochs = 50;
 net = train(net,P,T);
 Y = sim(net,P);
 plot(P,T,P,Y,'o')



Initializing Weights (init) &
Simulation (sim)
 Init network:
net = init(net);

 Simulation for a single input vector:
p = [1;2];
a = sim(net,p)

 Simulation for  a concurrent set of three 
inputvectors:
p = [1 3 2;2 4 1];
a=sim(net,p)



Training

 The network can be trained for
 function approximation (nonlinear regression), 
 pattern association, 
 pattern classification

 The training process requires a set of examples of 
proper network behavior - network inputs p and target 
outputs t 

 During training the weights and biases of the network 
are iteratively adjusted to minimize the network 
performance function net.performFcn

 The default performance function for feedforward 
networks is mean square error mse - the average 
squared error between the network outputs a and the 
target outputs t



Batch Gradient Descent (traingd)

 There are seven training parameters 
associated with traingd:
 epochs
 show
 goal
 time
 min_grad
 max_fail
 lr



Example - traingd

p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net=newff(p,t,3,{'tansig','purelin'},'traingd');

 modify some of the default training parameters
net.trainParam.show = 50;
net.trainParam.lr = 0.05;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;



[net,tr]=train(net,p,t);
TRAINGD, Epoch 0/300, MSE 1.59423/1e-05, 

Gradient 2.76799/1e-10
TRAINGD, Epoch 50/300, MSE 0.00236382/1e-05, 

Gradient 0.0495292/1e-10
TRAINGD, Epoch 100/300, MSE 0.000435947/1e-05, 

Gradient 0.0161202/1e-10
TRAINGD, Epoch 150/300, MSE 8.68462e-05/1e-05, 

Gradient 0.00769588/1e-10
TRAINGD, Epoch 200/300, MSE 1.45042e-05/1e-05, 

Gradient 0.00325667/1e-10
TRAINGD, Epoch 211/300, MSE 9.64816e-06/1e-05, 

Gradient 0.00266775/1e-10
TRAINGD, Performance goal met.

 Simulate
a = sim(net,p)
a =
-1.0010 -0.9989 1.0018 0.9985



Batch Gradient Descent with 
Momentum (traingdm)
 Another batch algorithm for  feedforward networks that often 

provides faster convergence: traingdm, steepest descent 
with momentum 

 Acting like a lowpass filter, momentum allows the network to 
ignore small features in the error surface. Without 
momentum a network can get stuck in a shallow local 
minimum. With momentum a network can slide through such 
a minimum

 You can add momentum to backpropagation learning by 
making weight changes equal to the sum of a fraction of 
the last weight change and the new change suggested 
by the backpropagation rule. The magnitude of the effect 
that the last weight change is allowed to have is mediated 
by a momentum constant, mc, which can be any number 
between 0 and 1 
 When the momentum  constant is 0, a weight change is 

based solely on the gradient 
 When the momentum constant is 1, the new weight change 

is set to equal the last weight change and the gradient is 
simply ignored 



Example - traingdm
p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net=newff(p,t,3,{'tansig','purelin'},'traingdm');
net.trainParam.show = 50;
net.trainParam.lr = 0.05;
net.trainParam.mc = 0.9;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
[net,tr]=train(net,p,t);
TRAINGDM, Epoch 0/300, MSE 3.6913/1e-05, Gradient 
4.54729/1e-10
TRAINGDM, Epoch 50/300, MSE 0.00532188/1e-05, Gradient
0.213222/1e-10
TRAINGDM, Epoch 100/300, MSE 6.34868e-05/1e-05, Gradient
0.0409749/1e-10
TRAINGDM, Epoch 114/300, MSE 9.06235e-06/1e-05, Gradient
0.00908756/1e-10
TRAINGDM, Performance goal met.
a = sim(net,p)
a =
-1.0026 -1.0044 0.9969 0.9992



Faster Training

 heuristic techniques
 variable learning rate backpropagation 

(traingda, traingdx)
 resilient backpropagation (trainrp)

 standard numerical optimization techniques
 Conjugate Gradient Algorithms (traincgf, 
 traincgp, traincgb, trainscg)
 Quasi-Newton Algorithms (trainbfg, 
trainoss)

 Levenberg-Marquardt (trainlm)



Training data and 
generalization





Training data and 
generalization

 The back-propagation network is good at generalization. 
 The network is said to generalize well when it sensibly interpolates input 

patterns that are new to the network. 
 Networks with too many trainable parameters for the given amount of training 

data learn well  but do not generalize well. This phenomenon is usually 
called overfitting. 

 With too few trainable parameters, the network fails to learn the training data 
and performs very poorly on the test data. 

 In order to improve the ability of a network to generalize from a training data 
set to a test data set, it is desirable that small changes in the input space 
of a pattern do not change the output components. This can be done by 
including variations in the input space of training patterns as part of the training 
set but this is computationally very expensive. 



Training data and 
generalization





Pruning neural networks

 One possible method of obtaining a neural network of 
appropriate size for a particular problem is to start with a 
larger network and then prune it to the desired size. 

 network-pruning techniques for general feedforward or 
recurrent networks
 Weight Decay
 Connection and Node Pruning



Weight Decay
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



Weight Decay
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Connection and Node Pruning



Connection and Node Pruning



Connection and Node Pruning



Connection and Node Pruning



Number of hidden nodes

 The size of a hidden layer is a fundamental question often raised in the 
application of multilayer feedforward networks to real-world problems.

 The exact analysis of this issue is rather difficult because of the complexity of 
the network mapping and the nondeterministic nature of many successfully 
completed training procedures.

 The size of a hidden layer is usually determined experimentally. 
 One empirical guideline is as follows. For a network of reasonable size (e.g., 

hundreds or thousands of inputs), the size of hidden nodes needs to be only 
a relatively small fraction of the input layer. 
 If the network fails to converge to a solution, it may be that more hidden nodes are 

required. 
 If it does converge, you may try fewer hidden nodes and then settle on a size 

based on overall system performance



Improving Generalization



Regularization



Early Stopping



Train, validation and test

 60% are used for training
 20% are used to validate that the network is 

generalizing and to stop training before 
overfitting

 The last 20% are used as a completely 
independent test of network generalization



Train, validation and test
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