Multilayer
feedforward
networks

Back Propagation



Introduction

o Simple perceptron has ability to solve a problem depends
on the condition that the input patterns of the problem be
linearly separable (for threshold units) or linearly
iIndependent (for continuous and differentiable units).

o These limitations of simple perceptrons do not apply to
feedforward networks with intermediate or "hidden" layers
between the input and output layers.

o An example shows why multilayer networks can solve
problems that cannot be solved by single-layer networks.



Example

o This example illustrates how a linearly
nonseparable problem is transformed to a
linearly separable problem by a space
transformation and thus can be solved by a
multilayer perceptron network with LTUS.

o The problem we consider is the XOR problem.

o Input patterns and the corresponding desired
outputs are:
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o Multilayer perceptron for the XOR problem
(a) Input space (linearly nonseparable) X
(b) Image space (linearly separable)

(c) A multilayer perceptron network for the -1
XOR problem.



o Example
o Two selected lines are
Xy —x,+05=0 andx; —x, —05=0

o Two LTU — outputs

zy = sgn(x; —x, +0.5) and z, = sgn(x; — x, — 0.5)

o z LTUs are defined
1, | i
()-1)

=
(k)] ! (3) (4) l Jid)
z7 = l.d' =-1] z = l,d'=1.

o Output

i

y = sgn(z; — z, — 0.5)



Introduction

o Backpropagation was created by
generalizing the Widrow-Hoff learning rule
to multiple-layer networks and nonlinear
differentiable transfer functions

o Standard backpropagation is a gradient
descent algorithm, as is the Widrow-Hoff
learning rule, in which the network weights
are moved along the negative of the
gradient of the performance function

o There are a number of variations on the
basic algorithm that are based on other
standard optimization techniques, such as
conjugate gradient and Newton methods




Back propagation

o The back-propagation learning algorithm is one of the
most important historical developments in neural
networks [Bryson & Ho 1969; Werbos 1974; LeCun
1985; Parker 1985; Rumelhart et al. 1986]

o This learning algorithm is applied to multilayer
feedforward networks consisting of processing elements
with continuous differentiable activation functions.

o Such networks associated with the back-propagation
learning algorithm are also called back-propagation
networks.



Back propagation

@ Given a training set of input-output pairs
{(x®,d®)} k = 1,2,...p, the algorithm provides a
procedure for changing the weights in a back-
propagation network to classify the given input patterns
correctly.

o The basis for this weight update algorithm is simply the
gradient-descent method as used for simple perceptrons
with differentiable units.



Back propagation

o For a given input-output pair {(x®),d®))}, the back-

propagation algorithm performs two phases of data flow.
First, the input pattern x(®) is propagated from the input
layer to the output layer and, as a result of this forward flow
of data, it produces an actual output y*)
Then the error signals resulting from the difference
between d®) and y®) are back-propagated from the output
layer to the previous layers for them to update their
weights.



Example

o Let us consider a three-layer network




Example

e First, let us consider an input-output training pair (x, d),
where the superscript k is omitted for notation
simplification. Given an input pattern x, a PE g in the
hidden layer receives a net input of

m
I]th = Z VgjXj

Jj=1
o And produces an output of

m
Zq = a(Hth) =a Z quJCj
j=1



Example

® T'he netinput for a PE i in the output layer is then

m

l [
net; = Z WigZg = 2 Wiqa 2 VqjXj
q:]_ q:‘]_

j=1
o And it produces an output of

l m
y; = a(net;) = a z WigZg | = @ Z Wiq@ z VgjX;
q:l :



Example

o Error signal and back propagation. We first define a cost
function

n n n [ l |

E(w) 1 E (d; — yi)* 1 E [d; — a(net;)]? 1 E d-a( E WigZ )
2 L L 2 L L 2 L gq=q

i=1 =1 ! q=1 ]

i=1

o Then according to the gradient-descent method, the
weights in the hidden-to-output connections are updated by

JE
AWig = =1 dwiq
JE || dy; ||Onet;
. = — . — 7. / t:
ﬂwzq n [ayi‘ laneti‘ lawiq‘ nld; — yilla’(ne 1)][Zq]

£ 100iZq



o Example

dy; | [onet; ,
© g = [2Z] [ 2] 25 < st

£ 10,iZq

o where §,; the error signal and its double subscript indicates the i —th
node in the output Iayer The error signal is defined by

dyi | _ ,
anet [ayl‘ [anet ‘ yl] [a (HEtI)]
o where net; is the net input to PE /i of the output layer and

a'(net;) = da(net;)/dnet;. The result thus far is identical to the delta

learning rule for a single-layer perceptron whose input is now the output
z, of the hidden layer

m=



Example

® Where §j, the error signal of PE ¢ in the hidden layer and
Is defined as

o . [ 9E]_ _[9F azq_,(t)ia
"= |Gnet, |~ |8zg| [omet,| ~ ¢ V0 - otiq

o where net, is the net input to the hidden PE q

o The error signal of a PE in a hidden layer is different from
the error signal of a PE in the output layer. Because of this
difference, the above weight update procedure is called
the generalized delta learning rule.



Example

o For the weight update on the input-to-hidden connections,
we use the chain rule with the gradient-descent method and
obtain the weight update on the link weight connecting PE j
in the input layer to PE g in the hidden Iayer

S i o HMI l 3|l e

o itis clear that each error term [d; - y;], i =1,2,...,n, is a function of z,

Evaluating the chain rule we have

Avg; = nZ[(d — yia'(net))wi,q| a’(nety) x;

i=1

n
= nz [65:Wiq] @'(nety) xj = n6pqx;
i=1



Example

® We observe that the error signal 6, of a hidden PE g can be
determined in terms of the error signals §,; of the PEs, y; that it feeds.
The coefficients are just the weights used for the forward propagation,
but here they are propagating error signals (6,;) backward instead of
propagating signals forward.

o This is shown by the dashed lines.

o This also demonstrates one important feature of the back-propagation
algorithm-the update rule is local; that is, to compute the weight
change for a given connection, we need only quantities available at
both ends of that connection.



Example

® The same form of the general weight learning rule, except that the

O

learning signals, r = § ,are different.

The above derivation can be easily extended to the network with more
than one hidden layer by using the chain rule continuously. In general,
with an arbitrary number of layers, the backpropagation update rule is
in the form

Aw;; = 16;X; = Ndoutput—iXinput—j
where "output — i" and "input — j" refer to the two ends of the
connection from PE j to PE i, x; is the proper input-end activation from
a hidden PE or an external input, and §; is the learning signal
(Eq. (10.35)) for the last (or output) layer of connection weights and
defined by Eq. (10.35) for all the other layers.



Algorithm BP

e Consider a network with Q feedforward layers, q =
1,2,...,Q, and let 9net; and 9y denote the net input and
output of the i-th unit in the g-th layer, respectively. The
network has m input nodes and n output nodes. Let 9w;;
denote the connection weight from 9-1y; to 1y,

o Input: A set of training pairs {(x©,d¥) |k = 1, ..., p}
where the input vectors are augmented with the last

elements as -1, that is, x,ﬂﬂl = 1.



e Step 0 (initialization)
Choose n > 0 and E, 4
Initialize the weights to small random values.
E=0

o Step 1 (Begin training loop)
Apply k-th input pattern to the input layer (g = 1)

dy; = ly; = x:.:k} forall i

o Step 2 (Forward propagation)
Propagate the signal forward through the
network using

ay; = a(‘net;) = a(¥; Wl yj)



o Step 3 (Output error measure)
Compute error value

n
1 K
E=5) @®-%)*+E
=1

Compute error signal
6, = (df — %y;) a'(“nety)
o Step 4 (Error back propagation)

Propagate the errors backward to update the weights and
compute the error signals for the preceding layers

— -1 new __ old
Afw;; =n96;97y; and w77 = Twii™ + Awy;

=15, = a’ (9 1net;) Z w;;16; for q=0Q,Q0 —1,...,.
J



e Step 5 (One epoch looping)
Check whether the whole set of training data
Is cycled once

YES -> Step 6
NO -> Step 1
o Step 6 (Total error checking)
If E < Epq > END
Else E=0 -> Step 1 (new training epoche)



Example

e Simple NN with unipolar sigmoid activation function
1

1+ e —Anet

y = a(net) =

o A=1,
a'(net) =y(1—y)



Example

1=

r=678

q=34.5

j=0,1,2

¢d (Desired Output)



o Step 3

'3‘} = ag(nety) (d — yg) = Vo (1 = ¥9)(d — ¥5)
o Step 4
Error signals

g
05 = ag (netg) E wigh; = ¥ (1 — ¥5) WogDg,
jmy

9
8, = a; (net,) Z Wiz8; = y7 (1 — ;) wy;ds,

i=9

B = aj (nety) D w8, = y; (1 = y3) (Weyg + WaBs),
r=f

7
&y = a (net,) Z W0, = ¥y (1 — y,) (WeyBs + Wy, 84).
r=46
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o Step 4
Weight update

= Ny ¥s» Awg; = Mgy,
84 Y1, Awgy = NOg ¥y,
= NB7 )3 AWy = 107y,
N33 Yo, Awy =Nd ¥,
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Algorithm

o There are two different ways in which this
gradient descent algorithm can be
Implemented:

Incremental mode (gradient is computed

and the weights are updated after each input
IS applied to the network)

batch mode (all the inputs are applied to the
network before the weights are updated)



Learning factors of Back
Propagation

o Learning factors
initial weights
learning constant
cost function
update rule
size and nature of the training set

architecture (number of layers and
number of nodes per layer)



Initial weights

& The initial weights of a multilayer feedforward network

O
O

strongly affect the ultimate solution.
Typically initialized at small random values.

Equal initial weight values cannot train the network
properly if the solution requires unequal weights to be
developed

The initial weights cannot be large, otherwise the
sigmoids will saturate from the beginning and the system
will become stuck at a local minimum

One proper way is to choose the weight w;;, in the range

3 3 . .
of [_JE-I_JR_I] where k; is the number of PE j that
feedforward to PE i (the number of input links of PE i)



Learning constant

& Another important factor that affects the effectiveness
and convergence of the back-propagation learning
algorithm significantly is the learning constant n

o There is no single learning constant value suitable for
different training cases and n is usually chosen
experimentally for each problem.

o A larger value of n could speed up the convergence but
might result in overshooting, while a smaller value of n
has a complementary effect. Values of n ranging from
1073 to 10 have been used successfully for many
computational back-propagation experiments



Learning constant

® Another problem is that the best values of the learning constant at
the beginning of training may not be as good in later training.

o A more efficient approach is to use an adaptive learning constant.
o The intuitive method is to check whether a particular weight update
has decreased the cost function.
If it has not, then the process has overshot and n should be reduced.

If several steps in a row have decreased the cost function, then we
may be too conservative and should try increasing n.

o The learning constant should be updated according to the following rule:
+a if AE < 0 consistently
An ={—bny if AE >0
0
o where AE is the change in the cost function and a and b are
positive constants



Learning constant

® The learning constant should be updateg according to the following rule:
+a ifA(t—1DA) >0
An(t +1) =1-bn if X(t —1)A(t) <0
0 otherwise
o where
o _ _
At)=— and A(t) =1 —c)A(t) + cA(t—1)
Ea‘wij—
o where ¢ € [0,1] is a constant
o Even without an adaptive rule, it may be appropriate to have

different n for each pattern or each connection weight according to
the fan-in of the corresponding node



Cost functions

6 The guadratic cost function is not the only possible choice. The
squared error term (d; — y;)? can be replaced by any other
differentiable function F(d;, y;)

o Based on this new cost function, we can derive a corresponding
update rule. It can be easily seen that only the error signal §,;
for the output layer changes for different cost functions, while all

the other equations of the back-propagation algorithm remain
unchanged

o The cost functions usually used are those based on L, norm

(1 < p < ) because of the advantage of easier mathematical
formulation. Such cost functions are in the form of

1
E = EZ(di —y;)P where 1<p <o
i



Cost functions

® The least squares criteria (L, norm) used in the quadratic cost function is

o

widely employed because of its simplicity.

L., norm, which is also called the Chebyshev norm
E” = sup|d; — y;
L

where sup | - | denotes a function selecting the largest component in the
vector. The above definition implies that the overall error measure E“equals
the largest component of the error vector, while all other error components are
negligible.
We can derive the error signal §,; of the output layer as
_0E (0 ifi#ix

oL Onet; {a’(neti *)sgn(d; * —y; *)  ifi=ix
where i = is the index of the largest component of the output error vector. This
error signal indicates that the only error with the back propagation is the
largest one among the errors of all output nodes and that it is propagated from
the i *th output node, where it occurs, back’ to the preceding layers.



Momentum

® The gradient descent can be very slow if the learning constant n is

O

small and can oscillate widely if n is too large.

This problem essentially results from error surface valleys with
steep sides but a shallow slope along the valley floor. One efficient
and commonly used method that allows a larger learning
constant without divergent oscillations occurring is the addition
of a momentum term to the normal gradient-descent method.

The idea is to give each weight some inertia or momentum so
that it tends to change in the direction of the average downhill force
that it feels. This scheme is implemented by giving a contribution
from the previous time step to each weight change:

Aw(t) = —nVE(t) + aAw(t — 1)
where a € [0,1] is a momentum parameter and a value of 0.9 is
often used



P 5.

Momentum
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Momentum

@ Trajectory without momentum (the left curve) has larger

O

oscillations than the one with momentum (the right curves).

We further observe from the right curves that the momentum can
enhance progress toward the target point if the weight update is in
the right direction (point A to A" ). On the other hand, it can redirect
movement in a better direction toward the target point in the case
of overshooting (point B to B’).

Momentum term typically helps to speed up the convergence and
to achieve an efficient and more reliable learning profile.

A momentum term is useful with either pattern-by-pattern or batch-
mode updating. In the batch mode, it has the effect of complete
averaging over the patterns. Although the averaging is only partial
in the pattern-by- pattern case, it can leave some beneficial

fliirtniatinne in tha traicartnns



Update rules

o Although the gradient-descent (or steepest-descent)
method is one of the simplest optimization technigues, it
IS not a very effective one.

o Further numerical optimization theory [Luenberger, 1976]
can be applied to make convergence of the back
propagation algorithm significantly faster.

o Numerical optimization theory provides a rich and robust
set of techniques which can be applied to neural
networks to improve learning rates.



Update rules

® The gradient-descent method considers only the first-order derivative of
an error function. It is helpful to take into account higher-order derivatives.
Using Taylor's series expansion on E(w) around the current point w, we
have

E(w) = E(wo) + (W — wo)TVE(W,) + 5 (W — wo) THW)(w — wp) + -

o where H(w) is called a Hessian matrix and is the the second derivate
evaluated at w,
d%E
U ow;0w;
o To find the minimum of E(w), set gradient to zero
VE(w)=VE(wy)+ Hw)(w—wgy)+---=0
o If we ignore the third- and higher-order terms, we obtain
w=wy,— H 1T(WVE((w,)

o oruse k to indicate the k —th step of learning, we obtain

wlk+1) — (k) _ H—l(w(k))pg(w{k}}

H(w) 2 V?E(w) or H



Update rules

This is called Newton's method of weight updating. Newton's method uses
the second derivative in addition to the gradient to determine the next step
direction and_step size.

It can converge quadratically when close to the solution of a convex
function.
However, there are several drawbacks in Newton's method.

In order to converge, it requires a good initial estimate of the solution.

For a convex function, it can converge quickly; however, for a nonconvex
function, it may easily converge to a local minimum or a saddle point.

The key drawback is that each iteration requires computation of the Hessian
matrix and also its inversion, and so the method is expensive in terms of both
storage and computation requirements.
Hence, it is not a practical technique, and alternative or revised methods
have been proposed. These include the conjugate-direction method and
the quasi-Newton method [Luenberger, 1976].




Objective

o The primary objective is to explain how to use the
backpropagation training functions in the toolbox
to train feedforward neural networks to solve

specific problems. There are generally four steps
In the training process:

Assemble the training data.
Create the network object.
Train the network.

Simulate the network response to new inputs.



Arcitecture
Neuron Model (logsig, tansig, purelin)

Input General Neuron

N1 N

]."IF
P
P,

Where

R = number of
elements in
input vector

P .
— /

a=f(Wp +b)




Neuron Model (logsig, tansig, purelin)

(] a
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_____________ _|

: a = tansig(n)
a = logsig(n)

. . . Tan-Sigmoid Transfer Function
Log-Sigmoid Transfer Function g

—
+

e

a = purelin(n)

Linear Transfer Function



Feedforward network

One layer
Layer of logsig
Input Neurons Input Layer of logsig Neurons
r N7 A r N A\
, p W _;"I’
P, 1 ERAR B WA . Sx1
SXR
“ j@ml
pz ]+ |}
R SX1 S
P, \/ \ J
) a=logsig(Wp+h)
Py Where... R = number of
elements in

input vector

S = number of
a= logsig(Wp+h) neurons in layer



Feedforward network
Two layers (Hidden and output)

Input Hidden Layer Output Layer
r N7 N /7 A\

e — Al [r— ] ai=y

IWii \ v <1 AVER \ —>

3 x
1 2
A% 2 n s x4 n /
j 4%1 j 3 x1
b1 1=P{ b2

2 4x1 4 3 x1 3
—/ \ / \ J

al = tansig (IWuip1 +bi) a2 =purelin (LW2.1a1 +b2)

This network can be used as a general function approximator. It can
approximate any function with a finite number of discontinuities arbitrarily
well, given sufficient neurons in the hidden layer



net

Creating a Network (newff)

= newff(P,T,S,TF,BTF,BLF,PF, IPF,OPF,DDF)

NEWFF(P,T,S,TF,BTF,BLF,PF,IPF,OPF,DDF) takes,

o
o
o

O O OO o

o

P - RxQ1 matrix of Q1 representative R-element input vectors.
T - SNxQ2 matrix of Q2 representative SN-element target vectors.
Si - Sizes of N-1 hidden layers, S1 to S(N-1), default = [].
(Output layer size SN is determined from T.)
TFi - Transfer function of ith layer. Default is 'tansig' for
hidden layers, and 'purelin’ for output layer.
BTF - Backprop network training function, default = 'trainim’.
BLF - Backprop weight/bias learning function, default = 'learngdm’.
PF - Performance function, default = 'mse'.
IPF - Row cell array of input processing functions.
Default is {'fixunknowns','remconstantrows’,'mapminmax'}.
OPF - Row cell array of output processing functions.
Default is {'remconstantrows’,'mapminmax'}.
DDF - Data division function, default = 'dividerand’;
and returns an N layer feed-forward backprop network



Creating a Network (newff)
Example

P=[0123456789 10]:
T=[012343212 3 4]:

o Here a network Is created with one hidden
layer of 5 neurons, (1 input, 1 output)

net = newff(P,T,5);
Y = sim(net,P);
plot(P,T,P,Y,"0")

o Training
net.trainParam.epochs = 50;
net = train(net,P,T);
Y = sim(net,P);
plot(P,T,P,Y,"0")



Initializing Weights (init) &
Simulation (sim)

o Init network:
net = 1nit(net);
o Simulation for a single input vector:
p = [1:2];
a = sim(net,p)
o Simulation for a concurrent set of three
Inputvectors:

p =113 2;2 4 1];
a=sim(net,p)



Training

o The network can be trained for
function approximation (nonlinear regression),
pattern association,
pattern classification

o The training process requires a set of examples of
proper network behavior - network inputs p and target
outputs t

o During training the weights and biases of the network
are iteratively adjusted to minimize the network
performance function net.performFcn

o The default performance function for feedforward
networks is mean square error mse - the average
squared error between the network outputs a and the
target outputs t



Batch Gradient Descent (traingd)

o There are seven training parameters
associated with traingd:

epochs
show
goal
time
min_grad
max_Ffail
Ir



Example - traingd

p=1[-1-122;050 5];
t=1][-1-111];
net=newff(p,t,3,{"tansig”, "purelin™}, "traingd”);

o modify some of the default training parameters
net.trainParam.show = 50;

net.trainParam.lr = 0.05;

net.trainParam.epochs = 300;
net.trainParam.goal = le-5;



[net,tr]=train(net,p,t);

TRAINGD, Epoch 0/300, MSE 1.59423/1e-05,
Gradient 2.76799/1e-10

TRAINGD, Epoch 50/300, MSE 0.00236382/1e-05,
Gradient 0.0495292/1e-10

TRAINGD, Epoch 100/300, MSE 0.000435947/1e-05,
Gradient 0.0161202/1e-10

TRAINGD, Epoch 150/300, MSE 8.68462e-05/1e-05,
Gradient 0.00769588/1e-10

TRAINGD, Epoch 200/300, MSE 1.45042e-05/1e-05,
Gradient 0.00325667/1e-10

TRAINGD, Epoch 211/300, MSE 9.64816e-06/1e-05,
Gradient 0.00266775/1e-10

TRAINGD, Performance goal met.

o Simulate

a = sim(net,p)

a =

-1.0010 -0.9989 1.0018 0.9985



Batch Gradient Descent with
Momentum (traingdm)

o Another batch algorithm for feedforward networks that often
provides faster convergence: traingdm, steepest descent
with momentum

o Acting like a lowpass filter, momentum allows the network to
ignore small features in the error surface. Without
momentum a network can get stuck in a shallow local
minimum. With momentum a network can slide through such
a minimum

o You can add momentum to backpropagation learning by
making weight changes equal to the sum of a fraction of
the last weight change and the new change suggested
by the backpropagation rule. The magnitude of the effect
that the last weight change is allowed to have is mediated
by a momentum constant, mc, which can be any number
between 0 and 1

When the momentum constant is 0, a weight change is
based solely on the gradient

When the momentum constant is 1, the new weight change
IS set to equal the last weight change and the gradient is
simply ignored



Example - traingdm

p [-1 -1 2 2;05 0 5];

t [-1 -1 1 1];
net=newff(p,t,3,{"tansig", "purelin™}, "traingdm®);
net.trainParam.show = 50;

net.trainParam.lr = 0.05;

net.trainParam.mc = 0.9;

net.trainParam.epochs = 300;

net.trainParam.goal = le-5;

[net,tr]=train(net,p,t);

TRAINGDM, Epoch 0/300, MSE 3.6913/1e-05, Gradient
4.54729/1e-10

TRAINGDM, Epoch 50/300, MSE 0.00532188/1e-05, Gradient
0.213222/1e-10

TRAINGDM, Epoch 100/300, MSE 6.34868e-05/1e-05, Gradient
0.0409749/1e-10

TRAINGDM, Epoch 114/300, MSE 9.06235e-06/1e-05, Gradient
0.00908756/1e-10

TRAINGDM, Performance goal met.

a = sim(net,p)

a
-1.0026 -1.0044 0.9969 0.9992



Faster Training

o heuristic techniques

variable learning rate backpropagation
(traingda, traingdx)

resilient backpropagation (trainrp)

o standard numerical optimization techniques
Conjugate Gradient Algorithms (traincgft,
traincgp, traincgb, trainscq)

Quasi-Newton Algorithms (trainbfg,
trainoss)

Levenberg-Marquardt (trainim)



Training data and
generalization

o We always require that training data be sufficient and proper. However, there

O

is no procedure or rule suitable for all cases in choosing training data.

One rule of thumb is that training data should cover the entire expected input

space and then during the training process select training-vector pairs
randomly from the set.

More precisely, assume that the input space is linearly separable into M
disjoint regions with boundaries being part of the hyperplanes. Let P be the
lower bound on the number of training patterns. Then choosing P such that

% > 1 hopefully allows the network to discriminate pattern classes using fine
piecewise hyperplane partitioning.
In some situations, scaling or normalization is necessary to help the learning.

For example, if the output function is sigmoidal, then the output values need to
be scaled properly.



Training data and
generalization

The back-propagation network is good at generalization.

The network is said to generalize well when it sensibly interpolates input
patterns that are new to the network.

Networks with too many trainable parameters for the given amount of training
data learn well but do not generalize well. This phenomenon is usually
called overfitting.

With too few trainable parameters, the network fails to learn the training data
and performs very poorly on the test data.

In order to improve the ability of a network to generalize from a training data
set to a test data set, it is desirable that small changes in the input space
of a pattern do not change the output components. This can be done by
including variations in the input space of training patterns as part of the training
set but this is computationally very expensive.



Training data and
generalization

One way is to form a cost function that is the sum of the normal cost term Ef

found in the back-propagation algorithm and an additional term that is a
function of the Jacobian:

. _1(0k 2+1 OE; 2+ L 1[0 ?
b= 2 x4 2\0x, 2\ dx,,

where x; refers to the j —th input. The rationale for this approach is that if the
input changes slightly, the cost function Ef should not change. To
minimize the new cost function, a double back-propagation network was

: dE
constructed such that one back propagation was for mf_ and the other for %.
J ]

This technique has been shown to improve the generalization capability of a

trained network by forcing the output to be insensitive to incremental changes
in the input



Pruning neural networks

o One possible method of obtaining a neural network of
appropriate size for a particular problem is to start with a
larger network and then prune it to the desired size.

o network-pruning techniques for general feedforward or
recurrent networks
Weight Decay
Connection and Node Pruning



Weight Decay

One approach to having the network itself remove nonuseful connections
during training is called weight decay. This is to give each connection w;; a
tendency to decay to zero so that cnnnectiﬂns disappear unless reinforced

Wu(k"' 1) =-n

6

for some positive f < 1. The same waght decay term was introduced when
we discussed the basic unsupervised learning rules. With the weight decay
term, weights that do not have much influence on decreasing the error while

learning (i.e., have ;f. ~ () experience an exponential time decay:
ij
w;j(k) = ﬁ“Wij{U)
This is equivalent to adding a penalty term w to the original cost function E,

changing it to
E'=E+ }fz wfj-
ij

and performing gradient descent Aw;; = —mdE’ /dw;; on the resulting total E”.
The f# parameteris then just § =1 — 2yn.




Weight Decay

o Although previous equations penalizes the use of more weights
than necessary, it discourages the use of only large weights.
That is, one large weight costs much more than many small
ones. To solve this problem, the following different penalty term

can be used:
BoE+yy
—1+wj
ij

o which is equivalent to making f dependent on w;;
2yn
Bij=1- (1+w? 3
Wij)
o so that the small w;; decay more rapidly than the large ones




Weight Decay

o The above weight decay rules aim at removing unnecessary
weights (i.e., connections). However, we often want to remove
whole nodes so that we can start with an excess of hidden
nodes and later discard those not needed.

o This can be achieved by making weight decay rates larger for
nodes that have small outputs or that already have small
incoming weights [Chauvin, 1989].

2yn
Bi=1- 212
o and the same B; is used for all connections feeding node i




O

Connection and Node Pruning

Instead of waiting for weight decay in the learning process: we can trim the
trained network by removing unimportant connections and/or nodes. With
this approach, it is necessary to retrain the network after the "brain
damage," but this retraining is usually rather fast.

When a network has learned, then an arbitrary setting of a weight w;; to
zero (which is equivalent to eliminating the connection from node j to node
i) typically results in an increase in the error E. Hence, efficient pruning
means finding the subset of weights that, when set to zero, lead to the
smallestincrease in E.

The same concept is applied to node elimination. Sietsma and Dow [1988]
proposed that all nodes of a network are examined when the entire set of
training data is presented and that each node (along with its synaptic
connections) that does not change state or replicate another node is
removed. Thus, they found a subset of the network that had the same



Connection and Node Pruning

o Another approach to connection and/or node pruning is based on estimation

of the sensitivity of the global cost function to the elimination of each
connection.

The idea is to keep track of the incremental changes in the connection weights
during the learning process. The connections are then ordered by
decreasing sensitivity values, and so the network can be efficiently pruned
by discarding the last items on the sorted list. In terms of possible
connection elimination, the sensitivity with respect to w;; denoted by §;; is
defined as

Sij = E(WU = 0) _E(WU = le;)

where w{’; is the final value of the connection on completion of the training

phase and all other weights are fixed at their final states. To calculate the
sensitivity value S;; after training, we need to present all the training patterns to
the network for each special weight setting w;; = 0. It is better if we can



Connection and Node Pruning

Sij = o Wij

o Since a typical learning process does not start with w;; = 0 but rather with
some small, randomly chosen initial value Wtr

E(WU = wlj;) E(wu = Wj; b

Sij = 7 Wij
o Furthennore, the numerator can be approximated by
E(WU = Wu) E(WU = Wu) o aWU dwif

o where the integration is along the line from an initial point / in the weight space
to the final weight state F. This expression can be further approximated by
replacing the integral by a summation over the discrete steps that the network
takes while learninn



® Connection and Node Pruning

o Thus, the estimated sensitivity to the removal of connection w;; is evaluated as

N-1 f
S5== Y () dwy ) 2
ij = —)aw;k) ———
£ aWU Wij; — WEL}_
o where N is the number of training epochs. The terms used are readily
available during the nonnal course of training using gradient-descent methods.

o For the special case of back propagation, weights are updated according

JE
'&ij = -n awu, then
N-1 f
2 w!.
Sy ==, (Bwy)) ———
k=0 n(w;; — wij)



Number of hidden nodes

The size of a hidden layer is a fundamental question often raised in the
application of multilayer feedforward networks to real-world problems.

The exact analysis of this issue is rather difficult because of the complexity of
the network mapping and the nondeterministic nature of many successfully
completed training procedures.

The size of a hidden layer is usually determined experimentally.

One empirical guideline is as follows. For a network of reasonable size (e.g.,
hundreds or thousands of inputs), the size of hidden nodes needs to be only
a relatively small fraction of the input layer.

If the network fails to converge to a solution, it may be that more hidden nodes are
required.

If it does converge, you may try fewer hidden nodes and then settle on a size
based on overall system performance
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Improving Generalization
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Regularization

Function &pprosimation
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Output

Early Stopping

Function Approximation
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Train, validation and test

o 60% are used for training

o 20% are used to validate that the network is
generalizing and to stop training before
overfitting

o The last 20% are used as a completely
Independent test of network generalization



Train, validation and test

J 'Performance (plotperf)

Best Validation Performance is 16.6401 at epoch 17
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