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Perceptron neuron
 One of the simplest was a single-layer network whose weights and 

biases could be trained to produce a correct target vector when 
presented with the corresponding input vector. 

 The training technique used is called the perceptron learning rule. 
 The perceptron generated great interest due to its ability to 

generalize from its training vectors and learn from initially 
randomly distributed connections. 

 Perceptrons are especially suited for simple problems in pattern 
classification. They are fast and reliable networks for the problems 
they can solve. 

 In addition, an understanding of the operations of the perceptron 
provides a good basis for understanding more complex networks. 



Perceptron neuron

 A perceptron neuron, which uses the hard-limit transfer 
function hardlim



Perceptron Architecture



Perceptron architecture
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Perceptron learning rules

 Simple perceptrons with linear threshold 
units (LTUs) -> corresponding perceptron 
learning rule

 Simple perceptrons with linear graded 
units (LGUs) -> corresponding Widrow-
Hoff learning rule.



Perceptron Learning Rule

௜ݕ
ሺ௞ሻ ൌ sgn ௜࢝

ሺ௞ሻ்࢞ ൌ sgn ෍ݓ௜௝ݔ௝
௞ 	

௠

௝ୀଵ

ൌ ݀௜
ሺ௞ሻ					݅ ൌ 1,2, … , ݊; 				݇ ൌ 1,2, … , ݌

Δݓ௜௝ ൌ ߟ ݀௜ െ 	sgn ௜࢝
்࢞ ௞ ௝ݔ ൌ ൜

௜ݕ	if								௝ݔ௜݀ߟ2 ് ݀௜
0, 							otherwise

						for			݆ ൌ 1,2, … ,݉

Learning signal (general weight learning rule)

ݎ ≜ ݀௜ െ ௜ݕ
-	௜ݕ actual output
݀௜	- desired output

Since the desired output ݀௜ takes the values േ1	we	have



Example
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Solution
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Example
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Solution
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Solution
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Solution



Adaline
 Simple perceptrons with linear threshold units 
 A network with a single linear unit is called an Adaline (Adaptive Linear 

Element) [Widrow, 1962]
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Adaline
 The usual gradient-descent algorithm suggests adjusting 

each weight ݓ௜ by an amount Δݓ௜	proportional to the 
negative of the gradient of Eሺ࢝ሻ at the current location:
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 If these changes are made individually for each input 
pattern ݔሺ௞ሻ in turn, then the change in response to 
pattern ݔሺ௞ሻ is simply

Δݓ௝ ൌ ߟ ݀ሺ௞ሻ െ ሺ௞ሻ்࢞࢝ ௝ݔ
ሺ௞ሻ

 Adaline learning rule or the Widrow-Hoff leaming rule [Widrow and 
Hoff, 1960].

 It is also referred to as the least mean square (LMS) rule.



Creating a Perceptron (newp)
 A perceptron can be created with the function 
newp
net = newp(P,T, TF, LF)
 P is an R-by-Q matrix of Q input vectors of R 

elements each.
 T is an S-by-Q matrix of Q target vectors of S 

elements each.
 TF - Transfer function, default = 'hardlim'.

• The transfer function TF can be HARDLIM or HARDLIMS.
 LF - Learning function, default = 'learnp‘.

• The learning function LF can be LEARNP or LEARNPN.



Creating a Perceptron (newp)
 Commonly the hardlim function is used in 

perceptrons, so it is the default
 Perceptron network with a single two-element 

input vector and one neuron. 
 net = newp([-2 2;-2 2],[0 1]);



Simulation (sim)

 Perceptron with a single two-element input 
vector,
net = newp([-2 2;-2 +2],[0 1])

 This gives zero weights and biases
net.IW{1,1}= [-1 1];
net.b{1} = [1];



Simulation (sim)
p1 = [1;1];
a1 = sim(net,p1)
a1 =
1

p2 = [1;-1];
a2 = sim(net,p2)
a2 =
0

 Two inputs in a sequence and get the outputs in a 
sequence as well

p3 = {[1;1] [1;-1]};
a3 = sim(net,p3)
a3 =
[1] [0]



Perceptron clasification



% Each of the five column vectors in P defines a 2-element input 
vectors and a row vector T defines the vector's target categories.  
We can plot these vectors with PLOTPV.

P = [ -0.5 -0.5 +0.3 -0.1;  -0.5 +0.5 -0.5 +1.0];
T = [1 1 0 0];
plotpv(P,T);

% The perceptron must properly classify the 5 input vectors in P into 
the two categories defined by T.  Perceptrons have HARDLIM 
neurons.  These neurons are capable of separating an input 
space with a straight line into two categories (0 and 1).

% NEWP creates a network object and configures it as a perceptron. 
The first argument specifies the expected ranges of two inputs.  
The second determines that there is only one neuron in the layer.

net = newp(P,T);


Classification with a 2-input Perceptron
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% The input vectors are replotted with the neuron's initial attempt at 
classification. The initial weights are set to zero, so any input gives 
the same output and the classification line does not even appear on 
the plot.  Fear not... we are going to train it!

plotpv(P,T);
plotpc(net.IW{1},net.b{1});

% ADAPT returns a new network object that performs as a better 
classifier, the network output, and the error.

net.adaptParam.passes = 3;
net = adapt(net,P,T); ili net = train(net,P,T);
plotpc(net.IW{1},net.b{1});
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% Now SIM is used to classify any other input vector, like 
[0.7; 1.2]. A plot of this new point with the original training 
set shows how the network performs. To distinguish it 
from the training set, color it red.

p = [0.7; 1.2];
a = sim(net,p);
plotpv(p,a);
point = findobj(gca,'type','line');
set(point,'Color','red');

% Turn on "hold" so the previous plot is not erased and plot 
the training set and the classification line. 

% The perceptron correctly classified our new point (in red) 
as category "zero“ (represented by a circle) and not a 
"one" (represented by a plus).

hold on;
plotpv(P,T);
plotpc(net.IW{1},net.b{1});
hold off;
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