
Neuralne mreže

Perceptrons

Perceptron neuron
 One of the simplest was a single-layer network whose weights and

biases could be trained to produce a correct target vector when
presented with the corresponding input vector.

 The training technique used is called the perceptron learning rule.
 The perceptron generated great interest due to its ability to

generalize from its training vectors and learn from initially
randomly distributed connections.

 Perceptrons are especially suited for simple problems in pattern
classification. They are fast and reliable networks for the problems
they can solve.

 In addition, an understanding of the operations of the perceptron
provides a good basis for understanding more complex networks.

Perceptron neuron

 A perceptron neuron, which uses the hard-limit transfer
function hardlim

Perceptron Architecture

Perceptron architecture

	 					 1,2, … , ; 				 1,2, … ,

Perceptron learning rules

 Simple perceptrons with linear threshold
units (LTUs) -> corresponding perceptron
learning rule

 Simple perceptrons with linear graded
units (LGUs) -> corresponding Widrow-
Hoff learning rule.

Perceptron Learning Rule

sgn sgn 	 					 1,2, … , ; 				 1,2, … ,

Δ 	sgn
2 								if	
0, 							otherwise

						for			 1,2, … ,

Learning signal (general weight learning rule)

≜
	- actual output
	- desired output

Since the desired output takes the values 1	we	have

Example

Class 1: 			 0.5; 2; 			 1
Class 2: 			 1; 2; 			 1

1
0.5
1 ;			

1
1
1 ; 2

1 ; 		 2
1

2
1.5 , 							 0.5,

Solution

Step 1
sgn 2 1.5 0.5

1 1
1.5
0.5

Step 3
sgn 0.5 1.5 2

1 1
1.5
0.5

Step 2
sgn 1.5 0.5 1

1 1
0.5
1.5

Step 4
sgn 1.5 0.5 2

1 1

Example

Class 1: 			 1
0 ; 1.5

1 ; 1
2 			 , , 1

Class 2: 			 2
0 ; 2.5

1 ; 1
2 		 , , 1

Solution

Solution

 1, 1, 2

1
0
1

,
1.5
1
1

,
1
2
1

,

2
0
1

,
2.5
1
1

,
1
2
1

,

Solution

Adaline
 Simple perceptrons with linear threshold units
 A network with a single linear unit is called an Adaline (Adaptive Linear

Element) [Widrow, 1962]

	

 Cost function which measures the system’s performance error by

E
1
2

1
2

1
2 d

Adaline
 The usual gradient-descent algorithm suggests adjusting

each weight by an amount Δ 	proportional to the
negative of the gradient of E at the current location:

Δ

 If these changes are made individually for each input
pattern in turn, then the change in response to
pattern is simply

Δ
 Adaline learning rule or the Widrow-Hoff leaming rule [Widrow and

Hoff, 1960].
 It is also referred to as the least mean square (LMS) rule.

Creating a Perceptron (newp)
 A perceptron can be created with the function
newp
net = newp(P,T, TF, LF)
 P is an R-by-Q matrix of Q input vectors of R

elements each.
 T is an S-by-Q matrix of Q target vectors of S

elements each.
 TF - Transfer function, default = 'hardlim'.

• The transfer function TF can be HARDLIM or HARDLIMS.
 LF - Learning function, default = 'learnp‘.

• The learning function LF can be LEARNP or LEARNPN.

Creating a Perceptron (newp)
 Commonly the hardlim function is used in

perceptrons, so it is the default
 Perceptron network with a single two-element

input vector and one neuron.
 net = newp([-2 2;-2 2],[0 1]);

Simulation (sim)

 Perceptron with a single two-element input
vector,
net = newp([-2 2;-2 +2],[0 1])

 This gives zero weights and biases
net.IW{1,1}= [-1 1];
net.b{1} = [1];

Simulation (sim)
p1 = [1;1];
a1 = sim(net,p1)
a1 =
1

p2 = [1;-1];
a2 = sim(net,p2)
a2 =
0

 Two inputs in a sequence and get the outputs in a
sequence as well

p3 = {[1;1] [1;-1]};
a3 = sim(net,p3)
a3 =
[1] [0]

Perceptron clasification

% Each of the five column vectors in P defines a 2-element input
vectors and a row vector T defines the vector's target categories.
We can plot these vectors with PLOTPV.

P = [-0.5 -0.5 +0.3 -0.1; -0.5 +0.5 -0.5 +1.0];
T = [1 1 0 0];
plotpv(P,T);

% The perceptron must properly classify the 5 input vectors in P into
the two categories defined by T. Perceptrons have HARDLIM
neurons. These neurons are capable of separating an input
space with a straight line into two categories (0 and 1).

% NEWP creates a network object and configures it as a perceptron.
The first argument specifies the expected ranges of two inputs.
The second determines that there is only one neuron in the layer.

net = newp(P,T);

Classification with a 2-input Perceptron

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

-1

-0.5

0

0.5

1

1.5

Vectors to be Classified

P(1)

P(
2)

% The input vectors are replotted with the neuron's initial attempt at
classification. The initial weights are set to zero, so any input gives
the same output and the classification line does not even appear on
the plot. Fear not... we are going to train it!

plotpv(P,T);
plotpc(net.IW{1},net.b{1});

% ADAPT returns a new network object that performs as a better
classifier, the network output, and the error.

net.adaptParam.passes = 3;
net = adapt(net,P,T); ili net = train(net,P,T);
plotpc(net.IW{1},net.b{1});

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

-1

-0.5

0

0.5

1

1.5

Vectors to be Classified

P(1)

P(
2)

% Now SIM is used to classify any other input vector, like
[0.7; 1.2]. A plot of this new point with the original training
set shows how the network performs. To distinguish it
from the training set, color it red.

p = [0.7; 1.2];
a = sim(net,p);
plotpv(p,a);
point = findobj(gca,'type','line');
set(point,'Color','red');

% Turn on "hold" so the previous plot is not erased and plot
the training set and the classification line.

% The perceptron correctly classified our new point (in red)
as category "zero“ (represented by a circle) and not a
"one" (represented by a plus).

hold on;
plotpv(P,T);
plotpc(net.IW{1},net.b{1});
hold off;

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

-1

-0.5

0

0.5

1

1.5

Vectors to be Classified

P(1)

P(
2)

