Neural networks

Preface and Neurons

Biological and MP neuron

~—— Synapse

Nucleus

Processing
element

(a) Biological neuron (b) artificial McCulloch and Pitts neuron [1943]

0 otherwise.

> - iff=0
>’s(‘+1)=a(ZW.;x;(f)-9.-). a(f):{l if f
j=1

The weight w; represents the strength of the synapse (called the connection or link),
connecting neuron j (source) to neuron i (destination).

ANN definition

In summary, an ANN is a parallel distributed information
processing structure with the following characteristics:

It is a neurally inspired mathematical model.

It consists of a large number of highly interconnected processing
elements.

Its connections (weights) hold the knowledge.

A processing element can dynamically respond to its input stimulus,
and the response completely depends on its local information; that is,
the input signals arrive at the processing element via impinging
connections and connection weights.

It has the ability to learn, recall, and generalize from training data by
assigning or adjusting the connection weights.

Its collective behavior demonstrates the computational power, and no
single neuron carries specific information (distributed representation

property).

o Processing Elements

o Net input
Linear function m
fi 4 net =Zw1xj—9
Quadratic function m

Spherical function m
p = P-zz (x; — Wij)z —0;

Jj=1

Polynominal tunction _ > > wyxx + X+ -6,

j=1k=1

o Processing Elements

o Activation function (transfer function) 1/2

Step function (f)z{‘ er=0

0 otherwise,

Hard limiter | ifF =0

a(f)=sgn(f) = {-1 7 <0

Ramp function (1 iff>1

a(fy=4f ifosf=1
0 iff <0,

o Processing Elements

o Activation function (transfer function) 2/2

Unipolar sigmoid function

Bipolar sigmoid function

Activation functions

‘a Aa a
1 1 1b_
f f :

0 -1 | 1

(a) (b) (c)

A=10753215105

-3-'240::2:3",’

(d)

Figure9.2 Sample activation (transfer) functions. (a) Step function. (b) Hard limiter. (c) Ramp func-
tion. (d) Unipolar sigmoid function. (e) Bipolar sigmoid function.

o Example

Assume first that each neuron is a LTU (linear treshold unit). The neurons LI, L2,
and L3 correspond to the lines, and the weights and threshold of each neuron
define the corresponding line. Each neuron decides on which side of its line the
input point lies. When a point in the region interior to the triangle formed by the lines
L1, L2, and L3 is inputed, neurons L1, L2, and L3 turn on. Then, since the
combined input to neuron L4 is 3.0 and it exceeds its threshold value of 2.3, neuron
L4 also turns on. Hence, neuron L4 acts like an AND gate.

Y X
;\\ le yd /4'
IN><L

1
(0,0)

Connections

() (d)

Xl : _'__Ql 'vl
"ﬂ __"__b—j— yﬂ
(b) (©)

Figure 9.4 Five basic network connection geometries. (a) Single-layer feedforward network.
(b) Multilayer feedforward network. (c) Single node with feedback to itself. (d) Single-layer recurrent
network. (e) Multilayer recurrent network.

Learning rules

o Parameter learning
o Structure learning

o These two kinds of learning can be
performed simultaneously or separately

o Most of the existing learning rules are
parameter learning type

Categories of learning

o Supervised learning (learning with a teacher)
o Reinforcement learning (learning with a critic)
o Unsupervised learning

Categories of learning

ANN
- ANN
— — X :)I—_ >y
| ' ad g
’ (Actual Output) (Input) (Actual Output)
Error Error Critic | -
. . Criuc

Signals Signal d Signals ‘ Sigl:al & Reinforcement

Generator (Desired Output) Generator Signal

(a) (b)

ANN N
X > Y
(Input) (Actual Output)

(c)

Figure9.6 Three categories of learning. (a) Supervised leaming. (b) Reinforcement leaming. (¢) Un-
supervised learming.

General weight learning rule

ith
neuron

J
Leaming
. | Signal f———o
m—1 r Generator
k x = -1

The general weight learning rule (d; is not provided for the unsupervised learning mode)

General weight learning rule

Aw; (D) = nrx (1),

o r — learning signal
o n — learning constant

r=f,w,x,d).

(+1) __ f)
Wit = w0+ m £ (w, X, d)x©,

Hebb's learning law

o Hebb [1949] hypothesized that when an axonal input
from neuron A to neuron B causes neuron B to
Immediately emit a pulse (fire) and this situation
happens repeatedly or persistently, then the efficacy of
that axonal input, in terms of its ability to help neuron B
to fire in the future, Is somehow increased.

o Hence, he suggested that synaptic strengths in the brain
change proportionally to the correlation between the
firing of the pre- and postsynaptic neurons

o Hebb's learning law

o The weights are adjusted according to the pre- and postcorrelations,
the learning signal » in the general weight learning rule is set as:

r=a(wix) =y,

o Where «(.) is activation function of PE. Hence, in the Hebbian learning
rule, the learning signal » is simply set as the PE's current output.

Aw; = na(wlx)x = ny;x

Aw;j = na(wiTx)xj =ny;ix; i=12,..,nj=12,..m

Hebb's learning law

The Hebbian learning rule is an unsupervised learning rule for a
feedforward network since it uses only the product of inputs and actual
outputs to modify the weights

No desired outputs are given to generate the learning signal to update
the weights

This learning rule requires weight initialization at small random
values around zero before learning.

Equation indicates that if the input-output correlation term yx; is
positive, the weight w;, will increase; otherwise the weight w;; decrease.
Furthermore, since the output is strengthened in turn for each input
presented, frequently occurring input patterns will have the most
influence on the weights and eventually produce the largest output

Example

Consider the Hebbian learning rule for an ANN with a single PE which
is a LTU. There are four inputs, x4, x5, x3 and x, to this PE. The
corresponding weight vectoris w = (wy,w,, ws, w,)’

1 —05 i
1 _ [1.5 @_(1 @[0
0 1.5 —0.5

Example

o Stepl

W(Z) = W(l) - Sgn ((w(l))Tx(l))x(l) — (

o Step?2

w(g) — W(z) - Sgn ((w(z))Tx(z))x(z) — (

1|

i |

0

2

0
0

1
0 1.5
) + sgn(0.5) (0_5

0

)=

—0.5
_1'55> + sgn(0.5) (1
1.5

Example

o Step3
1.5 —1 2.5
T 2.5 0 2.5
w®) = w® 4+ sgn ((W(3)) x(3)>x(3) =| Zo5 | tsgn(=175)| 4 |=|¢5%
1.5 —0.5 2

o It can be verified that sgn ((w(4))Tx(1)> = sgn ((w(‘*))Tx(z)):l and
sgn ((w(4))Tx(3)) = —1. This means that the inputs x® and x® that

caused the PE to fire previously will cause it to fire again in the future with
the final learned weights. This is also true for the input x® which inhibits
the firing of the PE. Thus, the final weights have captured the coincidence

relationship of input-output training pairs.

Simple neuron

Input Neuron without bias Input Neuron with bias
r N A r N N

P o w n E al P oV Z n f al

\—/ \ J —/ J
a=f(wp) a=f(wp+b)

p — input

w — weight

b — bias

a — output

f — transfer function

O 00 OO

A +1

a = hardlim(n)

Hard-Limit Transfer Function

a
N+1

........... P

— > 1 L
0

............. ¢

a = logsig(n)
Log-Sigmoid Transfer Function

Tranfer functions

o> Ezﬂ

a = purelin(n)

Linear Transfer Function

n=-5:0.1:5;
plot(n,hardlim(n), 'c+:");

Input Neuron w Vector Input

C N\ N
f a I
J
a=fiWp +b)
O Py, Pr— INPULS n

Neuron with Vector limit

Where

R = number of
elements in
input vector

l(-’]” 1])1 . ll’l. 2_[)2 T een T lul.Rl)R + b

W*p + b

Input

Neuron

N\

P

W
Rx1

\ n

1 xR

= b

j 1x1

R \ I1x1

a =fiWp +b)

a

1%

Neuron with Vector limit

Where...

R = number of
elements in
input vector

Transfer functions

1 / S

hardlim purelin logsig

Inputs

A Layer of neurons

Layer of Neurons W11 W12 -

W

Where

R = number of
elements in
input vector

S = number of
neurons in layer

a=f(Wp+b)

W2,1 Wo,2 -

_u)S.]. IUS.Q

IULR

wg g

A Layer of neurons

Input Layer of Neurons

r N0

P

xl W -\
-1

n

Sx1

A Where...
— R = number of

] elements in
Input vector

S = number of
neurons in layer 1

a=f (Wp+b)

Multiple layer of neurons

Layer 3

’

3

32
Iw~,,

Dl e <A

S

a,

l “

b,

3
n,

7

S
oo

1
2
I
1

n 3

Inputs Layer 1 Layer 2
N\ A\ 4 A\
"“’Un ”11 : atl IW:JH n, . a,
) ' f 2.
‘ b b,
) 1 1 l 2 2
P n, — 4 n, — 4,
—> / >/
P b, L 2
: 1 . : 1 2 ’)
Pr ng - 4y N = ag
/ — X
blsI IH’ . e l bz_\:
1 1
__/ | J N\ J

a'=f (IW"p+b")

a’=f’(LW"'a'+b’)

q

a @

l.

\.‘\

32 Z
Iw ey B
+

N\

J

a’ = (LW"a’+b’)

a’ = (LW (LW ' (IW" p+b')+b)+b’)

o Multiple layer of neurons

Input Layer 1 Layer 2 Layer 3
N kY4 N7 N
p - al ' a "=
Rx1 IWii \ . W LWz \ - S-_XI’ L“ 3.2 \ . m‘l
SIXR C_:I_F. fl §2xS§! f2 53 S§? f3
Stx1 §2x1 §3x1
|=p{ b f = b2 -/ | =P bs —/‘
R S'x1 S! §2x1 S2 S$3x1 S$3
N N\ P J 0 7
al = f1(IWLip+b) a2 = f2(LW21 a1 +b2) a3 =f3 (LW32a2+b3)

a3 =3 (LW32 £2 (LW2ifl (IWLip +b1)+b2)+b3 =y

Simulation with Concurrent
Inputs in a Static Network

Inputs Linear Neuron
o NEWLIN(P,S,ID,LR) takes these
/ \ A arguments,

P - RxQ matrix of Q representative
input vectors.

S - Number of elements iIn the output

n /1 4 . vector.

ID - Input delay vector, default=[0]
LR - Learning rate, default = 0.01;
o and returns a new linear layer.

LV J

a = purelin(Wp+Db)

P=[-2 -1 012 3; -3-202 35];
Net=newlin(P,1)

loNe)

0 net.inputs{l}.i1nputs - 2 i1nputs
o net.inputs{l}.range

o First 1nput range(-2,3)

o Second input range(-3,5)

Simulation with Concurrent
Inputs in a Static Network

W = [1 2land b = [(] :Ziév{vﬂl}oz [1 21;

1 2 2 3 - " y
Pl=u, [)2=L] [)3=L], Py = L} P=[1223; 2138 1);

A = sim(net,P)
A=
5 - 8 5

Simulation with Sequential
Inputs In a Dynamic Network

Inputs Linear Neuron
r N A\

p(1)
n(r) a(r)

e % 7

ai)=w pO+w plt- 1)

net = newlin([-1 1],1,[0 1]);
net.biasConnect = 0;

Simulation with Sequential
Inputs In a Dynamic Network

W=[1 2] net.IW{1,1} = [1 2];
Suppose that the input sequence is

pl= [1] p2 = [21 p3 = |:3:[, p4 = [4] P= {123 4};

A sim(net,P)
-

[1] [4] [7] [10]

Simulation with Concurrent
Inputs In a Dynamic Network

o Concurrent set of inputs

p1 = [1] Po = [‘)} Py = [3]- Py = [4:[P=1[123 4];

sim(net,P)

A
1 2 3 -

o Two input sequences

p.(1) = [{L P1(2) = [2].p1(3) = Eﬂ, py(4) = Eﬂ

P = {[1 4] [23] [32] [41]};
Po(1) = [4], pa(2) = [3]. pa(3) = [2], p2(4) = [1]

A = sim(net,P);

A= {[1 4] [4 11] [7 8] [10 5]}

